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SAMENVATTING

Better Globe Forestry (BGF) is een bedrijf gevestigd in Kenia dat in 2004 is opgericht met
als missie om door middel van sociaal ondernemerschap zoveel bomen te planten als er
mensen op deze planeet zijn. Nu wil BGF de bebossingsinspanningen monitoren die door
de jaren heen zijn geleverd en zien hoeveel bomen er nog leven, en vooral, hoeveel Melia

volkensii bomen. Omwille van het enorme gebied dat moet worden gemonitord, is dit
alleen mogelijk met behulp van teledetectie. Daarom is een verkennend onderzoek de
eerste stap om tot een duurzaam monitoringinstrument te komen. In deze masterproef
werd onderzocht of het mogelijk is Melia volkensii bomen nauwkeurig te tellen in beide
bebossing layouts.

Tijdens een veldcampagne tussen oktober 2021 en januari 2022 werden boomgegevens
verzameld in de regio van Kiambere in beide bebossing layouts. Verder werd gebruik
gemaakt van beelden met een zeer hoge resolutie verkregen door de pléiades-satelliet,
met een panchromatische band met een spatiale resolutie van 0.5 m en drie multispectrale
(MS) banden (d.w.z. rood, groen, blauw en nabij-infrarood) met een ruimtelijke resolutie
van 2 m. Met behulp van het satellietbeeld en de verzamelde gegevens werden twee
methodes getest: een op template matching (TM) gebaseerde methode en een op lokale
maximum filter (LMF) gebaseerde methode. Met behulp van empirische en synthetische
templates werd de TM methode eerst geoptimaliseerd met behulp van de vier MS-banden
en de brightness feature. In de boerderijen en de plantage werden de beste performance
(F-score = 0.411 en plot level accuracy = 0.787) verkregen met behulp van de brightness
feature met drie empirische templates. Voordat de tweede methode werd toegepast, wer-
den mathematical morphology procedures gebruikt om het beeld te filteren. Deze methode
presteert ondermaats in vergelijking met de TM-methode met een F-score van 0.023 met
behulp van de groene band in de boerderijen en een plot level accuracy van 3.425 met
behulp van de brightness feature in de plantage. De positionele nauwkeurigheid (3 m)
van de bomen was het meest uitdagende probleem tijdens de trainingsfase van het TM -
algoritme en de validatiefase van beide methoden. Om de bebossingsinspanningen van
BGF nauwkeurig te monitoren, zijn meer ruimtelijk nauwkeurige boomposities nodig, moet
het TM-algoritme verder worden geoptimaliseerd en zijn beelden met een hogere spatiale
resolutie nodig.
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ABSTRACT

Better Globe Forestry (BGF) is a Kenyan-based company founded in 2004 with a mission
to plant as many trees as there are people on this planet through social entrepreneur-
ship (BGF, nd). Now BGF wants to monitor the afforestation efforts that have been made
throughout the years and to see how many trees are still standing and, in particular, how
many Melia volkensii trees. Due to the vast area that needs to be monitored, this is only
possible with remote sensing. Therefore, an explorative study is the first step in obtaining a
sustainable monitoring tool. In this master’s dissertation, it was researched if it is possible
to accurately count Melia volkensii trees in both layouts.

During a field survey between October 2021 and January 2022, tree data was collected
in the region of Kiambere in both afforestation layouts. Furthermore, very high-resolution
(VHR) imagery acquired by the pléiades satellite was used, containing a panchromatic band
with a spatial resolution of 0.5 m and three multispectral (MS) bands (i.e., red, green,
blue and near-infrared) with a spatial resolution of 2 m. Using the satellite image and the
collected data, two methods were tested: a template matching (TM) based method and a
local maximum filter (LMF) based method. The TM method was first optimised using the four
MS bands and a brightness feature using empirical and synthetic templates. In the farms
and the plantation, the best performance (F-score = 0.411 and plot level accuracy = 0.787)
was obtained using the brightness feature with three empirical templates. Before applying
the second method, mathematical morphology procedures were used to filter the image.
This method underperforms compared to the TM method with an F-score of 0.023 using the
green band in the farms and a plot level accuracy of 3.425 using the brightness feature
in the plantation. The positional accuracy (3 m) of the trees was the most challenging
problem during the training stage of the TM - algorithm and the validation stage of both
methods. To accurately monitor the afforestation efforts of Better Globe Forestry, more
spatial accurate tree positions are needed, the TM algorithm needs further optimisation
and higher resolution imagery is needed.
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1. INTRODUCTION

Better Globe Forestry (BGF) is a Kenyan-based company founded in 2004 with a mission
to plant as many trees as there are people on this planet through social entrepreneurship
(BGF, nd). By planting these trees, the company wants to finance and sustainably imple-
ment its vision to eradicate poverty and corruption in Africa. In 2009, BGF expanded their
operations to Uganda. The company is firmly embedded in East African society and tries to
work closely with local communities.

BGF’s expertise lies in the commercial afforestation of drylands in East Africa, particularly
with the indigenous mahogany species, Melia volkensii, in an agroforestry layout. Other
species, such as Melia azedarach, are also being planted. Trees in the agroforestry layout
are planted with wide spacing to allow farmers to intercrop with food crops. Apart from
this first layout, there are classic plantations, the Kiambere model plantation and the Nyon-
goro plantation. Now BGF wants to monitor the afforestation efforts that have been made
throughout the years and to see how many trees are still standing and, in particular, how
many Melia volkensii trees. Due to the vast area that needs to be monitored, this is only
possible with remote sensing. Therefore, an explorative study is the first step in obtaining a
sustainable monitoring tool. The development of a prototype monitoring tool contains two
objectives:

1. Counting of individual tree crowns in both afforestation layouts.

2. Differentiating Melia volkensii from other tree species.

The first objective is the subject of this master’s dissertation. The second objective is the
subject of the master’s dissertation of Forceville (2022), which will be often referred to
throughout this thesis.

Many individual tree counting methods have been developed (Larsen et al., 2011; Zhen
et al., 2016; Cheng and Han, 2016; Ke and Quackenbush, 2011; Erikson and Olofsson,
2005). However, this master’s dissertation will solely focus on two approaches: template
matching (TM) and local maximum filter (LMF). The methods are developed based on a
study area in Kiambere where Melias are planted in two afforestation layouts: a plantation
and an agroforestry layout. In the following text, the model plantation in Kiambere will be
referred to as ’the plantation’ and the agroforestry systems as ’farms’.

The research questions this master’s dissertation will try to answer are the following:

1. Is it possible to accurately count Melia Volkensii trees using very high resolution (VHR)

satellite imagery?

2. Which method has the highest performance?

1



1. Introduction

3. Is there a different method needed for the different afforestation layouts?

Considering the limitations of the Pléiades satellite image with a spatial resolution of 0.5 m,
it is expected that the trees with a crown area smaller than 0.25 m² will go undetected.

In chapter 2, literature about individual tree crown detection (ITCD) is reviewed. The meth-
ods and materials are elaborated in chapter 3 followed by a results and discussion section
(chapter 4). Lastly, in chapter 5, an overall conclusion about the study is made.

2



2. LITERATURE REVIEW

Researchers have developed several automatic or semi-automatic methods for individual
tree crown detection with the use of very high-resolution (VHR) images (Ke and Quacken-
bush, 2011). For different satellite imagery, the interaction between the forest canopy and
the incident light can result in various spatial and spectral characteristics depending on the
site, sensor type, image scale and timing of the image collection (Lamar et al., 2005). These
characteristics (or a combination of characteristics) help to assist the separation of individ-
ual tree crowns, e.g., local minima reflectance values due to shadow between individual
crowns (Culvenor, 2002; Gougeon, 1995), local maxima reflectance values representing
the tree crown top (Culvenor, 2002; Pouliot et al., 2002) and crown shape characteristics
(Pollock, 1996). The approaches published in the literature are usually developed and eval-
uated for one specific sensor and one specific forest (Larsen et al., 2011). This makes it
hard to draw an objective conclusion about what method performs best for a given sit-
uation. Several factors decide the performance of a method; for example, a man-made
forest is structurally very simple, while an unevenly-aged naturally regenerated forest can
be structurally complex, making ITCD hard. Larsen et al. (2011) mention that if the relative
performance of different tree detection methods on different forest types was available, an
expert system could, for a specific image, choose the best-suited method. In a review study
conducted by Zhen et al. (2016), it was demonstrated that most of the methods developed
between 1990 – 2015 for tree detection were developed for closed softwood forests (i.e.
deciduous forests) and a smaller amount for closed hardwood forests (deciduous stand).
Moreover, most studies yield higher accuracy in conifer stands than in deciduous stands
and in sparse rather than dense canopies (Zhen et al., 2016).

Different authors divide ITCD methods into different groups. Larsen et al. (2011) have di-
vided the methods available for passive monoscopic imagery into six groups, namely: local
maximum filtering(LM) (Wulder et al., 2000; Pouliot et al., 2002; Wang et al., 2004), val-
ley following (VF), template matching (TM) (Pollock, 1996), scale-space (SS) theory-based
methods (Brandtberg and Walter, 1998; Lindeberg, 1996), Markov random fields (MRFs)
(Maillard and Gomes, 2016) - based methods and marked point process (MPP) methods
(Gomes et al., 2018). The simplest approach for tree crown detection is based on finding
local maxima on the original or a pre-processed grey-scale image, which are assumed to
be tree crowns. VF methods also make the assumption that tree tops are the brightest
spots while all the areas between the crowns appear darker due to shading. These shaded
pixels are chained together, forming a boundary of tree crowns (Gougeon, 1995). The third
group, template matching, uses templates or models to detect trees in the image (Pollock,
1996). SS methods refer to methods that try to locate trees of different sizes in the same
grey-scale image using different scale levels (Larsen et al., 2011). Ke and Quackenbush
(2011) has stated that scale was a critical factor influencing tree detection accuracy. For
example: for images where tree crown sizes are variant and the image resolution is invari-
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2. Literature review

ant, it is difficult to detect all crowns simultaneously: tree crowns that are small compared
to the image resolution may not be detected and large crowns may be identified as multiple
trees. MRF and MPP are two probabilistic methods (Descombes and Pechersky, 2006).

Maillard and Gomes (2016); Ke and Quackenbush (2011) have discriminated two more addi-
tional segmentation methods, namely: watershed segmentation (WSS) and region growing
(RG). Watershed segmentation is a method that views a greyscale image as a topographic
surface where each pixel’s grey level intensity equals the elevation (Biswas et al., 2020).
Firstly, the local maxima, interpreted as tree crowns, are inverted to local minima, forming
valleys. Next, the image is slowly flooded and water accumulates in the valleys until it
overflows into adjacent valleys. Lastly, dams are built on the watershed lines to prevent
overflowing from one basin into another. These dams form the segments and delineate
tree crowns. RG is another segmentation technique that groups pixels based on predefined
criteria such as specific intervals of intensity or colour (Ke and Quackenbush, 2011). Start-
ing from seed pixels (random or based on prior knowledge), the neighbouring pixels are
examined and added to the growth region if their properties meet the criteria (Gonzales
2008).

It should be noted that many approaches use hybrid methods for the detection and delin-
eation of tree crowns Maillard and Gomes (2016); for example, the markers (i.e. tree tops)
obtained with local maxima filter are often used as a subsequent step for tree crown delin-
eation using VF, WSS or RG (Pouliot et al., 2002; Erikson, 2004, 2003, 2006; Wang et al.,
2004). Gomes and Maillard (2013) have also proposed a hybrid method integrating TM and
MPP for detecting urban trees and trees in orchards in Brazil, France and Italy using VHR
imagery.

Some methods extend to multiview images as well, e.g. Gong et al. (2002); Kempf et al.
(2021); Korpela et al. (2007) have used a model-based approach in 3D using stereo-pairs.
Hirschmugl et al. (2007); Heipke et al. (2007); Xiao et al. (2018) have obtained a canopy
height model (CHM) from stereoscopic images and performed LMF or WSS on this 3D CHM.
However, in recent years, high-density LiDAR has become the remote sensing data source
of choice to directly obtain a CHM for tree crown detection and delineation (Larsen et al.,
2011). The obtained CHM is then often processed using algorithms that are closely related
to the methods used for passive optical imagery (Larsen et al., 2011), such as LMF and
methods based on SS theory (Brandtberg et al., 2003). Several studies combine LiDAR
(active optical data) and MS passive optical data for detection and segmentation (Heipke
et al., 2007). Larsen et al. (2011); Zhen et al. (2016) have mentioned that even though 3D
data has become more available through LiDAR, the development of methods for passive
optical images is still justified because VHR satellites may be used to provide data where
airborne laser scanning is too expensive. However, Zhen et al. (2016) has mentioned that
by integrating MS data and LiDAR data, commission and omission errors may be reduced.

In the approaches mentioned above, some detect tree location before delineating crowns,
while others combine these fundamental components in a single step (Ke and Quacken-
bush, 2011). According to Ke and Quackenbush (2011), some even consider tree detection
as equivalent to tree delineation. Only TM, MRF, MPP, LMF and SS are tree detection meth-
ods (Kempf et al., 2021; Ke and Quackenbush, 2011).

4



2. Literature review

Some algorithms work well in relatively closed canopies, while others are more suited to
individual trees with little crown overlap (Pouliot et al., 2002). Larsen et al. (2011) have
stated that because TM can use shadows cast by trees, the method is more suitable for
open forests, while VF and LM-based methods are more suited for denser areas where trees
are separated by areas of shade. Larsen et al. (2011) also confirmed this statement by
comparing the methods in different images with different crown closures (from a homo-
geneous plantation, an area with isolated tree crowns, to an extremely dense deciduous
forest). Gougeon (1997) has used a locally adaptive method that applies the LMF in areas
identified as dense and a modified method in areas identified as open using. The dense
and sparse areas are identified based on a gradient image.

Since the objective of this study is to count trees in a dense (plantation) and sparse (agro-
forestry) layout, template matching and local maximum filtering will be further elaborated
and tested in this study. LMF is the simplest method and has shown promising results in
dense forest stands, while template matching is more complex but has shown promising
results in open stands. Before applying the algorithms, the correct remote sensing data
must be selected (section 2.1). Moreover, in further research, these methods could also
be integrated into more complex tree crown detection and delineation algorithms, as men-
tioned above. Once the data has been obtained, several preprocessing and enhancement
steps can be applied to the data (section 2.2). The different tree crown detection methods
will be discussed in section 2.3 and 2.4.

2.1 Satellite imagery

Tree crowns in VHR show within-crown brightness variation due to the effect of branches
and branch shadow patterns. According to Pouliot et al. (2002), this affects all tree detec-
tion algorithms. This effect can be reduced by decreasing the image resolution and thus
averaging the spectral data over a larger areal unit. On the contrary, crown boundaries
become less distinct at lower image resolutions, making them harder to identify. For this
reason, Pouliot et al. (2002) suggests using a one-dimensional ratio of the average crown
diameter to the pixel size to characterise the crown shape at different image resolutions. A
ratio between 3:1 and 19:1 is proposed as lower ratios do not retain distinct crown bound-
aries and higher ratios may contain too much within-crown variation. The ratio optimum
will differ depending on the algorithm’s sensitivity to this within-crown brightness variation
and boundary brightness gradient.

Table 2.1 gives an overview of the available satellites and their respective spatial resolution
and spectral bands. The increase in spatial resolution was not always accompanied by an
increase in spectral resolution for VHR, which is often restricted to the panchromatic band:
there is only one available satellite with VHR in multispectral bands (at this time) (Maillard
and Gomes, 2016).

Kaszta et al. (2016) has mentioned that, in African savanna ecosystems, it is also important
to consider seasonality while classifying land cover components, due to the huge contrast
in vegetation state during the wet and dry periods (Venter et al., 2003). During the rainy
season, the image is affected by dense cloud cover and a high amount of atmospheric
water vapour leading to large gaps in the image (Kaszta et al., 2016). Nonetheless, images

5



2. Literature review

Table 2.1: Available very high-resolution satellites with their launch year, spatial resolution
(m) and spectral bands i.e.: red (R), green (G), blue (B), near-infrared (NIR), near-infrared 2
(NIR2), coastal (C), yellow (Y) and red edge (RE)(Maillard and Gomes, 2016).

Satellite
Launch PAN MS

MS bands
year resolution (m) resolution (m)

Ikonos II 1999 0.82 3.2 B, G, R, NIR

Quickbird-2 2001 0.65 2.62 B, Gr, R, NIR

WorldView-1 2007 0.46 / /

Geoeye-1 2008 0.46 1.84 B, G, R, NIR

WorldView-2 2009 0.46 1.85
C, B, G, Y,

R, RE, NIR, NIR2

Pléiades 1A 2011 0.50 2.00 B, G, R, NIR

Pléiades 1B 2012 0.50 2.00 B, G, R, NIR

Kompsat-3 2012 0.70 2.80 B, G, R, NIR

SkySat-1 2013 0.90 2.00 B, G, R, NIR

WorldView-3 2014 0.31 1.24
C, B, G, Y,

R, RE, NIR, NIR2

SkySat-2 2014 0.90 2.00 B, G, R, NIR

Kompsat-3A 2015 0.55 2.20 B, G, R, NIR

WorldView-4 2016 0.30 1.24 R, G, B, NIR

during the wet season the images are often preferred because they show well-developed
vegetation cover and leaf-on conditions (Liu et al., 2015). The high photosynthesis rate
can also lead to confusion between different vegetation types (i.e. trees, shrubs, grass and
crops) (Kaszta et al., 2016). On the contrary, dry-season images are cloud-free but it might
be difficult to detect leafless deciduous trees.

2.2 Image preprocessing and enhancement

The goal of preprocessing in the context of ITCD is similar to most remote-sensing ap-
plications. Most commonly this includes the removal of noise, enhancing the distinction
between the objects (i.e. tree crowns) and the background and masking irrelevant areas
(Ke and Quackenbush, 2011). For VHR imagery this often includes the selection or the
derivation of the most appropriate image band(s). Different preprocessing techniques will
be discussed in section 2.2.1-2.2.3, in no particular order. The order in which enhancement
and preprocessing techniques are applied depends on the used method.

2.2.1 Pan-sharpening

Most of the operating earth observation satellites such as Landsat, Spot, Ikonos and Pléi-
ades provide panchromatic images at a higher spatial resolution than their multispectral

6



2. Literature review

mode (Ehlers et al., 2010), which provides high spectral resolution (Ozendi et al., 2016).
The resolution ratio (RR) measures the difference in spatial resolution between the panchro-
matic and multispectral modes and is calculated as the ratio of the ground sampling dis-
tances (Klonus and Ehlers, 2009). In order to generate MS images with the same high spa-
tial resolution as the PAN images, pan-sharpening methods are developed (Ozendi et al.,
2016)by combining both images (Ehlers et al., 2010). Ehlers et al. (2010) have stated that
most of these methods work well with images that were acquired at the same time by one
sensor (single-sensor, single-date fusion). Some of the methods are the Wavelet Transform
(WT), the Brovey transformation, intensity-hue-saturation (IHS) transformation, principal
component analysis (PCA) sharpening, the high pass filtering (HPF), fusion and the Gram
Schmidt (GS) fusion. Each pan-sharpening method has both advantages and disadvan-
tages: while some focus on enhanced spatial information, others focus more on improved
colour information. Alimuddin et al. (2012) have concluded that GS and PCA have shown
better results for colour reproduction compared to HPF and W-IHS methods when applied to
WorldView-2 imagery. Pu et al. (2018) have used the GS spectral sharpening approach for
the classification of trees with the use of Pléiades imagery.

2.2.2 Band selection

Salamí et al. (2019) have expressed that RGB images are not the most convenient for the
soil/plant classification problem. The NIR band is a popular choice to detect tree crowns,
because of its sensitivity to vegetation differences (Ke and Quackenbush, 2011). Quack-
enbush et al. (2000) compared the results when using the average different red bands
and the square root of the sum of these bands but found little difference in the results in
comparison to using the NIR band alone. However, other studies exist where other bands
or combinations are used. Wang et al. (2004) used a PCA and only used the first compo-
nent image, containing the most variation, for the classification of spruce trees in British
Colombia (Canada). Bunting and Lucas (2006) have suggested that the ratio between a red
edge band and a red band results in better treetop detection and boundary edge defini-
tion. Pouliot et al. (2002) have proposed a method where the absolute difference between
NIR and red spectral bands is used to reduce the spectral response from soil and non-apex
crown pixels in VHR images. Other studies (Brandtberg and Walter, 1998; Khan and Gupta,
2018) transformed RGB colour images into intensity-hue-saturation (IHS) to suppress non-
forest areas. Salamí et al. (2019) have transformed an RGB image captured with a drone
(DJI Phantom4) into CIE Lab colour space to detect olive trees in Spain.

2.2.3 Filters

Smoothing filters are used for blurring and noise reduction to get a gross representation
of the objects of interest, such that the intensity of smaller objects blurs in with the back-
ground (Gonzalez and Woods, 2008). Different filters can be used for image smoothing.
The mean and the Gaussian filter are some of the most known and straightforward. The
Gaussian filter is often preferred as it preserves edge features better than a mean filter
(Ke and Quackenbush, 2011). Image smoothing can also negatively affect working with a
coarser image resolution by blurring the edge between the crown area and the background.
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Mathematical (MM) is a tool widely used in diverse image-processing tasks. In remote
sensing, it is used to generate morphological features for the discrimination of objects in
high spatial images. Without going into the mathematical background of MM, the basic
operations and their effect on images will be explained. The two fundamental operators
are erosion and dilation (Kalapala, 2014). These operators are applied using a structuring
element (SE), which can have different shapes (e.g. disk, square, lines, . . . ) and sizes,
depending on the case study. The first row of figure 2.1 shows examples of SE with the
centre indicated by a dot (Gonzalez and Woods, 2008). The second row of figure 2.1 shows
how these SE are converted into rectangles since this is required when working with images
(Gonzalez and Woods, 2008). Erosion shrinks objects in the image, while dilation thickens
objects in the image.

Figure 2.1: The first row shows examples of structuring elements (SE) and the second row
shows the converted SE into rectangles by adding background pixels (Gonzalez and Woods,
2008). The black dots represent the centre of the SE.

Figure 2.2b demonstrates the erosion of a binary image (one/grey pixels represent the
object, zero/white pixels the background) with square 3x3 SE with the origin in the centre.
For each pixel in the image, if the SE is completely contained by the object in the image,
the pixel is left unchanged, or else it is deleted (Gonzalez and Woods, 2008; Soille et al.,
1999). Figure 2.2c demonstrates the dilation of the same image with a square 3x3 SE
with the origin in the centre. For each pixel in the image that has a value of one at the
origin, all pixels within the SE are changed to 1 and else the pixels are left unchanged.
These basic operations can also be applied to greyscale images. When performing an
erosion on a greyscale image, the value is replaced with the minimum value within the SE
instead of deleted, resulting in a darker image with bright features reduced (Gonzalez and
Woods, 2008). Conversely, when performing a dilation on a greyscale image, the values are
replaced with the maximum value within the SE, resulting in a brighter image and reduced
dark features.

By combining these basic operators (i.e. erosion and dilatation), other operators, such as
opening and closing, can be derived. An opening is an erosion (shrinking) followed by di-
lation (regaining shape), while closing is a dilation followed by erosion (Khan and Gupta,
2018). These morphological filters are non-linear transformations that locally modify the
geometry of features in the image (Terol-Villalobos and Vargas-Vázquez, 2005). Opening of
the image results in a new image where the small, bright object (compared to the SE) is
deleted and replaced with a greyscale value of their surroundings Khan and Gupta (2018).
Closing of an image does the opposite and removes small dark pixels, while bright pixels
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(a) (b) (c)

Figure 2.2: Erosion (b) and dilation (c) of the image (a) with a 3x3 square structuring el-
ement. White pixels represent the background/ zero pixels and grey pixels represent the
object/ one pixel.

are left unchanged. Benediktsson et al. (2003) has mentioned that it is a common practice
to use the opening and closing transform in order to isolate bright and dark structures in
images. Opening and closing both generally smoothen the contour of an object Gonzalez
and Woods (2008). Depending on the interaction between the SE and size and the size
of the structure, some structures may have a high response for a given SE (Benediktsson
et al., 2003). When the exact size of the structures (i.e. trees) is known, the appropriate SE
can be chosen. Biswas et al. (2020) have tested the impact of the iterative opening of the
image with SE with different kernel sizes to detect mangrove patches and have found that
increasing the number of iterations decreased the overall accuracy of tree detection. The
study concluded that one iteration of morphological opening promoted the overall accuracy
when a square SE of 3x3 was used since additional openings remove not only noisy pixels
but also valid tree pixels (Biswas et al., 2020). However, they have also mentioned that
these parameters may change depending on lighting conditions and the heterogeneity of
the vegetation matrix in which the trees are embedded. Salamí et al. (2019) have used con-
secutive opening and closing operations prior to applying a template matching algorithm
(section 2.3) to detect olive trees in Spain.

Opening by reconstruction is an erosion followed by morphological reconstruction while
closing by reconstruction is a dilation followed by morphological reconstruction (Khan and
Gupta, 2018). Both these reconstruction operations partially restore the objects after ero-
sion or dilation has been applied. Kalapala (2014) has mentioned that reconstruction-based
opening and closing are more effective than the standard opening and closing at removing
noise without affecting the overall shape of the objects. Kalapala (2014) has used opening
and closing by reconstruction for tree counting on a plantation and in an urban area.

2.3 Template matching

Template matching is an object detection method which can be used to detect trees in
remotely sensed imagery and was originally presented by Pollock (1996). Hung et al. (2012)
has stated that the performance of object detection algorithms purely based on statistical
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information is limited by the quality of the training data. Therefore, the use of an algorithm
based on a tree model (template) is proposed, which incorporates both the object shape
and context information. As shown in figure 2.3 this approach has two main steps. First, a
template (T) needs to be generated with the use of a model or by learning from a training
data set (Cheng and Han, 2016). The second step is calculating the similarity between a
given source image and the templates at each possible location to find the best matches
according to a minimum distortion or maximum correlation measure (threshold). Lastly, a
post-processing step can be applied to remove hits that are too close to each other and
probably originate from the same tree by implementing a minimum distance or maximum
overlap parameter (Erikson and Olofsson, 2005). The first two steps will be explained in
more detail in sections 2.3.1 and 2.3.2.

Figure 2.3: Template matching flowchart as suggested by Cheng and Han (2016).

2.3.1 Templates

TM-based methods include generating a series of models (or templates) that characterize
the trees at different locations on the image. Thus taking both the trees’ geometric and
radiometric properties into consideration (Wang et al., 2004). A first and more traditional
approach to template matching is to use a comprehensive model based on representative
examples of the object of interest (Pratt, 1991). This example-based approach is attractive
because of its much simpler implementation than the synthetic approach: there is no need
for a detailed understanding of the process through which the trees in the three-dimensional
world become two-dimensional images (Pollock, 1996). Pollock (1996) has mentioned that
if there is a large natural spatial (e.g., shape, size and orientation of the object) and pattern
(e.g., foliage density) variation within object images, the manual effort to collect a repre-
sentative set of examples may be impractical. Alternatively, a synthetic comprehensive
image model can be produced. This strategy permits readily acquired knowledge of the
sensing system, the sensing situation and physical properties of individual tree crowns in
the scene to be used, making it less reliant on specific scene and sensing conditions than
other tree crown recognition procedures (Pollock, 1996).

Several different types of synthetic templates for object detection can be distinguished.
Cheng and Han (2016) make the distinction between two groups: rigid and deformable TM.
Rigid templates can be effective in some applications but have several disadvantages. The
template must be precise, making it sensitive to shape and density variation. An exact ge-
ometric template is often unavailable because of changes in viewpoint and large intra-class
variations among objects (e.g. trees). Deformable templates are more powerful in dealing
with shape deformations and intra-class variations. It imposes geometrical constraints on
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the shape and integrates local image evidence. Deformable templates can once more be di-
vided into two classes: free-form and parametric deformable templates (Jain et al., 1998).
Free-form templates represent an arbitrary object shape by constraining, e.g. continuity
and smoothness. The most popular models are the active contour models, also known as
the snake models. The snake is modelled as able to deform elastically, but deformation in-
creases its internal energy causing a restitution force that tries to bring it back to its original
shape (Jain et al., 1998). In parametric deformable templates, its variation is constrained
by a parametric formula or by using a prototype and deformation modes. The latter is often
used when some prior information about the geometrical shape (e.g. tree crown shape) is
available.

Templates generated for tree detection can be considered parametric deformable templates
constrained by a parametric formula. The basic elements to create a synthetic tree crown
image model are prior knowledge of the tree shape, the position of the light source (sun)
and the position of the camera (satellite) (Larsen, 1997; Pollock, 1996). Based on these
elements, a template can be generated, as seen by the satellite. As mentioned at the
beginning of this section, the trees’ geometric and radiometric properties are taken into
consideration. Both these aspects will be further elaborated.

Geometric aspects

It is not possible to generalise and model the exact shape of a natural object (Hung et al.,
2012). Therefore a simple geometric model is used to approximate the outline of the tree
crown. The three-dimensional shape outline can be described by a shape function, based on
prior knowledge of the target object. Pollock (1996) has proposed the use of a generalised
ellipsoid of revolution (GER) to represent a crown given by equation 2.1.

(z2)n/2

rn3
+
(2 + y2)n/2

rn1
= 1 (2.1)

The tree crown coordinates (x,y,z) are defined in a Cartesian coordinate frame, such that
the unit vector z points vertically upwards and the unit vector x points toward the true
north. The parameter n is a positive, non-zero shape factor that determines the curve of
the ellipsoid (figure 2.4). When n decreases past 1 to 0, the curve becomes increasingly
upward concave, while if n increases from 1, the curve becomes increasingly downward
concave. The equation assumes that the tree crowns are rotationally symmetric about a
vertical axis (Erikson, 2004). In other words, the radius of the width of the crown on the
x-axis (r1) is equal to the one on the y-axis (r2). The modelled crown volume is bound by the
xy-plane (i.e. z is only positive). This model has been used by Larsen (1997) and Larsen and
Rudemo (1998) to detect Norway spruce (Picea abies) and by Erikson and Olofsson (2005)
to detect pines (Pinus sylvestris L.). Gomes et al. (2018) has represented tree crowns by a
half-dome with a fixed diameter to crown height ratio, but varying radii. This is to detect
a wide diversity of tree species in Belo Horizonte (Brazil), Sydney (Australia) and California
(USA) in a scattered layout, using a template matching - marked point process (TM-MPP)
approach.
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Figure 2.4: Examples of the generalised ellipsoid generated by formula 2.1 for r1 = 50 and
varying r3 and n. In the upper row r3 = 100 and in the lower row r3 = 200. In the left column
n=1, in the middle n=2 and in the right n=3. The volume of the 3D models is bounded by
the xy-plane. When n=2 the curve is part of an ellipse and when n=1 the curve is a straight
line (Erikson, 2004).

In the study conducted by Hung et al. (2012) in Australia (Queensland), an ellipsoid (equa-
tion 2.2) has been used to approximate the shape of acacia (Acacia nilotica), parkinsonia
(Parkinsonia aculeata) and mesquite (Prosopis pallida).

2

r21
+
y2

r22
+
z2

r23
= 1 (2.2)

After simulating the interaction of the sun with the tree crown, the 3D model is then pro-
jected onto the xy-plane in the viewing direction of the sensor.

Radiometric aspects

Once the shape function is constructed, the interaction of the scene irradiance with the
tree crown needs to be modelled, which depends on both the shape and the physical com-
position of the crown. The simplest model assumes that the crown is an opaque surface
(Pollock, 1996). This is a reasonable assumption for broad-leaved trees with leaves concen-
trated near the crown envelope, forming a continuous surface. However, this assumption
is generally difficult to justify, particularly for mature trees growing under competition. To
simulate the radiance of a permeable volume (i.e. a volume of light-scattering leaves), prior
knowledge of the leaf area distribution function is needed. For this reason, in what follows,
an opaque volume will be assumed.

In the opaque surface model, the contribution of the radiance leaving a surface cell in a
particular viewing direction can be described by the Minnaert reflectance function (equation
2.3) (Minnaert, 1941):
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L = ρE0
k + 1

2
[cos(θ)]k[cos(θe)]k−1 (2.3)

E0 is the perpendicular irradiance of a beam of light with the incident angle θ (Mather and
Tso, 2016; Pollock, 1996). θ is the angle between the surface normal of the tree and the
beam direction (incident angle) and θe angle between the surface normal and the viewing
direction (exitant angle) (figure 2.5). Both θ and θe are restricted to [0,π2 ], because if θ is
outside this interval, the beam does not irradiate the surface point and if θe is outside this
interval the surface point is not visible by the sensor. ρ is a variable between 0 and 1 which
accounts for light absorption and k is a parameter between 0 and 1 related to the intrinsic
properties of the surface. If k = 0, the surface is assumed to be perfectly smooth and if
k = 1, the expression becomes the Lambertian reflectance function, where the surface is
assumed to be perfectly rough (Mather and Tso, 2016; Pollock, 1996).

Figure 2.5: Geometrical relationships among the sun, the sensor, and the target position.
Mather and Tso (2016)

Several studies (Gomes and Maillard, 2014; Gomes et al., 2018; Maillard and Gomes, 2016;
Hung et al., 2012) have successfully generated tree crown models under the assumption of
a perfectly rough crown. However, it is important to note that most surface materials have
a roughness that lies between these two extremes and is wavelength dependent (Mather
and Tso, 2016). Gomes and Maillard (2014) has introduced a simplified model (equation
2.4) in which the crown irradiance is calculated with the Lambertian reflectance model but
has included an additional term accounting for diffuse ambient light.

L = Lmcos(θ) + mb (2.4)

Lm is the maximum radiance of the tree and θ is the same as in formula 2.3. Amb is the
ambient, diffuse light.
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Larsen (1997) has extended the model introduced by Pollock (1996) by including the ground
surface irradiance and the shadow cast by trees on this surface (figure 2.6 a and b). The
ground plane is assumed to be a horizontal, flat surface that reflects and absorbs light.
The light interaction can also be described by equation 2.3, but with ρ and k characterising
the ground surface. Larsen and Rudemo (1998) have suggested that the surface can be
approximated as a Lambertian surface (i.e. k = 1). The tree’s shadow can be generated
using ray-tracing with a simple hard shadow model (Gomes et al., 2018). The incident light
vectors that are tangential to the surface function are projected to the ground plane to
produce the outline of the shading (Hung et al., 2012). Maillard and Gomes (2016) has
stated that using the whole shadow is not always beneficial in situations where the shadow
is (partially) projected onto another tree. For this reason, a shadow clipping factor has been
introduced (figure 2.6 c and d). The shadow cast by the tree on the ground can provide
valuable information, which can be exploited by the template matching algorithm (Hung
et al., 2012).

Figure 2.6: Comparison between an isolated tree from the (a) WorldView-2 image and (b)
the geometrical-optical 3D model. A clipping factor of about 80 % was applied to the same
images in (c) and (d) to enable the use of only a portion of the shadow in cases where that
shadow is not projected on the ground but on another object (Gomes and Maillard, 2014).

2.3.2 Similarity measure

The templates generated in the first step are then used to search for the locus of best
matching where trees are most likely to be, using a similarity measure and a threshold
(Wang et al., 2004; Cheng and Han, 2016). Commonly used measures are the sum of abso-
lute differences (SAD), the sum of squared differences (SSD), normalized cross-correlation
(NCC) and Euclidean distance (ED) (Cheng and Han, 2016; Hisham et al., 2015; Fouda,
2014). SAD and SDD are computationally fast but are sensitive to outliers and not robust
to template variations. On the other hand, NCC is computationally slower but is more ac-
curate and robust under uniform illumination changes (Hisham et al., 2015; Fouda, 2014).
Moreover, NCC has shown promising results in previous remote sensing studies using VHR
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and TM (Larsen et al., 2011; Gomes and Maillard, 2013; Shen and Bao, 2014; Korpela et al.,
2004).

NCC(, y) =

∑



∑

j[(,j) − ̄]
∑



∑

j[ƒ(,j) − ƒ̄ ]

{
∑



∑

j[(,j) − ̄]2
∑



∑

j[ƒ(,j) − ƒ̄ ]2}1/2
(2.5)

The NCC ranges from -1 to 1 and can be calculated using equation 2.5, where ,j is the
intensity of the pixel, ̄ is the mean intensity for the pixels under the template, ƒ,j is the
intensity for the corresponding pixel in the template and ƒ̄ is the mean intensity of the
template (Vahidi et al., 2018; Erikson and Olofsson, 2005). Next, the template is slid across
the image (figure 2.7), resulting in a correlation matrix. A higher value indicates a better
match between the template and the image at that particular position. The NCC values
were thresholded to find the centre of the tree crowns. Hung et al. (2012); Vahidi et al.
(2018) have stated that the threshold should be selected with care because setting the
threshold too low will lead to too many falsely detected trees while setting it too high leads
to many undetected trees.

(a) (b)

Figure 2.7: Figure a shows example matrices of a template and reference image. In figure
b, the template is matched to the image. To do so, the reference image needs to be padded
with zeros, so the centre of the template is placed on the first pixel of the reference image.
At each position of the padded image, the NCC is calculated (Hisham et al., 2015).

2.4 Local maximum filtering

Local maximum filtering is a technique for identifying tree crowns in high spatial resolution
imagery, which assumes that points with the highest brightness (i.e. digital number) within
a search window are possible tree locations (Pouliot et al., 2002; Quackenbush et al., 2000).
This method is adequate for trees with the greatest reflectance at their top, surrounded by
lower-intensity pixels (Maillard and Gomes, 2016). For this reason, it has been widely used
for detecting conifers. The windows that move over the image can be overlapping or not;
the non-overlapping window ensures that pixels in the image are evaluated in only one
sample window frame, reducing detection errors caused by portions of bright trees being
repeatedly detected (Pouliot et al., 2002).

The success of the LM tree recognition depends on the careful selection of the search
window. If it is too small, errors of commission occur by selecting nonexistent trees or
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multiple radiance peaks for an individual tree crown. On the contrary, if the window size is
too large, the LM filter will miss some trees (Pouliot et al., 2002; Wulder et al., 2000). When
using a fixed window size, Pouliot et al. (2002) has suggested that the size should be smaller
than the average crown size to reduce commission errors. To minimise this problem, Wulder
et al. (2000) has introduced windows with varying sizes by assessing the spatial structure
of the image obtained by analysing the local semivariogram with different pixel lags. By
incorporating spatial information into the determination of window sizes, the commission
errors (i.e., detections of trees that do not represent trees) will decrease, while omission
errors are primarily in function of the image resolution (Wulder et al., 2000). A remotely
sensed image can be processed for semivariance through the computation of relationships
between pixels pairs (Curran and Atkinson, 1998). The larger the semivariance, the less
similar the pixels are. Consider a transect passing across a remotely sensed image where
the digital number z of pixels x is extracted at regular intervals (x = 1, 2, . . . , n) (Curran
and Atkinson, 1998). The relationship between a pair of pixels found h pixels apart (the
lag distance) is recorded as the average squared difference between all pixel pairs at lag
distance h (Wulder et al., 2000). Within each transect, m pairs of observation are separated
by the same h (Lévesque and King, 1999). For a given lag h, the semivariance is calculated
by equation 2.6:

Y(h) =
1

2m

m
∑

=1

[z() − z( + h)]2 (2.6)

The semivariogram is a graphical representation of the semivariance as a function of lag
(Lévesque and King, 1999) (figure 2.8). The semivariance will rise until the ’sill’, which indi-
cates the maximum variability between pixels. The range is the distance to the sill (Curran
and Atkinson, 1998). The pixel values at the lag locations greater than the range consid-
ered spatially independent of the values within the range (Wulder et al., 2000). According
to Woodcock et al. (1988), the range is often associated with the size of individual ob-
jects, such as tree crown size in VHR imagery or forest stand size in low-resolution imagery.
Wulder et al. (2000) has suggested the computation from transects in the eight cardinal di-
rections around each pixel in the image. For each of the eight transects, the semivariance
at each lag is stored in an array until the semivariance values cease to increase, repre-
senting the range in that direction. The eight directional range values are then averaged,
resulting in the range for that pixel location. Once the semivariance ranges are obtained, a
conversion into window sizes is needed (Daley et al., 1998) using a conversion table. Wul-
der et al. (2000); Pouliot et al. (2002) have found that by calculating a personalised window
size for each pixel, greater accuracy can be obtained compared to using a fixed window
size is used when counting trees in coniferous forests.

A second problem with the LM filter is that it is affected by false bright pixels (Maillard and
Gomes, 2016). Brandtberg and Warner (2006); Pouliot et al. (2002) have suggested ap-
plying a Gaussian filter to the image to lower the number of local maxima being identified.
This low-pass filter grants more weight to the crown centre pixels than those located toward
the crown edge, which might belong to other bright objects or noise (Maillard and Gomes,
2016). The smoothing scale directly affects the number of local maxima and also causes
a rounding-off of the brightness values of the tree crown edges (Brandtberg and Warner,
2006). Pouliot and King (2005) have adapted a method first proposed by Culvenor (2000) to
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Figure 2.8: Example of a semivariogram where the semivariance (y) is plotted in function of
the lag distance. The sill, the range and the nugget are indicated on the graph. (Lévesque
and King, 1999)

determine the optimal smoothing factor by plotting the number of local maxima in function
of the smoothing factor (sigma) and finding the point where the function starts to diverge.
The optimal global scale is defined as that which minimises both errors of omission and
errors of commission, producing the best overall detection results (Pouliot and King, 2005).
Pouliot and King (2005) have found by comparing different optimisation approaches for LMF
(global optimum smoothing factor, variable local window size and local smoothing factor),
the use of an optimal global smoothing factor produced the most consistent accuracies
and is the least parameter dependent. A second approach is the use of the Laplacian-of-
Gaussian (LoG) (Wang et al., 2004), which, because it is based on the second-order spatial
derivatives, highlights locations where the image intensity varies rapidly (Brandtberg and
Warner, 2006).

Wang et al. (2004) developed a more complex method for detecting tree tops in a coniferous
forest in British Colombia. In the first step, the trees were separated from the background
using a Laplacian of the Gaussian edge detector on the first principal component of principal
component analysis. Each closed contour derived by edge detection is treated as an ob-
ject containing one or multiple trees. A local non-maximum suppression method, which sets
non-local maxima to zero on a grey-level image, was used to obtain one set of treetops. The
second set of treetops was obtained by applying a local maximum filter on the morpholog-
ically transformed distance. This second set is based on the assumption that treetops are
located near the tree’s centre. In order to satisfy the two assumptions associated with tree-
tops, the final markers were obtained by intersecting both. If a maximum-distance treetop
is located within a three-by-three window surrounding a grey-level treetop, then this tree-
top is selected as a final treetop. Khan and Gupta (2018) have suggested a method suited
for classifying trees in a dense forest in South India. The technique uses two morphological
operations: first, opening and closing are applied to the image, followed by opening and
closing by reconstruction. This process refines the image by removing unusual noise on
which an LMF is applied.
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3. MATERIAL AND METHODS

The concepts and two methods (template-matching and local maximum filtering) described
in section 2 were adjusted and applied to the study area to detect Melia Volkensii trees in
the farms and in the plantation. Firstly, in section 3.1 this area was described. Secondly,
the satellite image and ground truth data collection were explained in section 3.2. Thirdly,
the regions of interest (ROI) extraction before the application of the two approaches were
discussed. Fourthly, in sections, 3.4 and 3.5, the template-matching and local maximum fil-
tering approaches were elaborated. Lastly, the strategy used for the accuracy assessment
of the methods was discussed in section 3.6.

3.1 Area description

The study focused on a 9 x 13 km area (figure 3.1) located in Kitui county in semi-arid Kenya.
The plantation borders Lake Kiambere on the western side and the farms are located east of
the plantation. In Kenya, rain is delivered during two seasons. One during the boreal spring
(March-May), known as "the long rains" and one in the boreal fall (October-December), "the
short rains" (Cook and Vizy, 2013). Since 2006 daily rainfall data has been collected at the
plantation site (Vandenabeele, 2021). Figure 3.2 shows the average monthly precipitation
from 2006 until 2021, with the monthly precipitation in 2021 indicated since this is the year
where most data were acquired. The seasonality throughout 2021 is shown in figure 3.3,
where distinct red areas represent areas with a lot of vegetation.
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Figure 3.1: Location of the study area in central Kenya, with an indication of the plantation
(red line), bordering on Lake Kiambere, and the 38 farms (yellow dots) (Forceville, 2022).

Figure 3.2: Average monthly rainfall from 2006 - 2021 in Kiambere. Monthly precipitation
from 2021 is indicated by red dots (Vandenabeele, 2021).
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Figure 3.3: False colour composite with a NIR, red and green scheme causing vegetation
to give the image a distinct red colour. The PlanetScope satellite acquired the imagery
in February, April, August and October of 2021. The four false colour images display the
seasonality of the study area throughout the year.
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3.2 Data collection

3.2.1 Satellite imagery

The image data was acquired on the second of June 2021 at 7:51 AM local time (GMT +3)
with the Pléiades 1B satellite. This specific satellite was chosen because of budgetary lim-
its. The image contains one panchromatic band with a spatial resolution of 0.5 meters
and four multispectral bands (Red (R), Green (G), Blue (B) and Near Infrared (NIR)) with a
spatial resolution of 2 meters (table 3.1). The Pleiades 1B satellite is a sun-synchronous
satellite with a swath width of 20km. At the time of acquisition, the solar azimuth varied
from 43.911◦-43.539◦ and the solar elevation varied from 57.430◦ - 57.546◦. The imagery
has a pre-processing level 1C, where the digital numbers were converted to a 16-bit image
containing top-of-atmosphere reflectance. The ortho geometric processing level is ortho,
which produced a georeferenced image in Earth geometry, corrected from acquisition and
terrain off-nadir effects (Airbus, 2011). The imagery was registered to WGS 84 (Worldwide
Geodetic System 84) datum and the Universal Transverse Mercator (UTM) zone 37S projec-
tion.

Figure 3.4: True colour image acquired by the Pléiades 1B satellite on the second of June
2021. The image extent is displayed in CRS WGS 84/UTM zone 37s and is approximately 9
km x 13 km.

Of all the measured Melia trees in the farms and the plantation, 99.22% have a diameter at
breast height ranging from 0.00 cm to 25.00 cm (table 3.3), corresponding with an average
crown diameter range of 131.57 cm to 745.11 cm. This corresponds with a crown diameter-
to-pixel ratio between 0.66:1 and 3.73:1 in the multi-spectral bands. To obtain a ratio
between 3:1 and 19:1 (section 2.1), a 0.50 m resolution pan-sharpened Pléiades image
was produced. The pan-sharpened image was attained by fusing the 2 m resolution MS
image with the 0.50 m resolution panchromatic image with the use of the Gramm-Schmidt
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Table 3.1: Band parameters of Pléiades 1B satellite.

Band Bandwidth (nm) Spatial resolution (m)

Panchromatic 480-830 0.5
Blue 430-550 2
Green 490-610 2
Red 600-720 2
NIR 750-950 2

spectral sharpening method in the SPEAR pan-sharpening tool in ENVI 5.6.1. The sharpened
imagery resulted in a ratio between 2.63:1 and 14.90:1, which was still unsatisfactory for
the smaller trees.

3.2.2 Field survey

Ground truth data were collected on the plantation and on farms during a field campaign
from October 2021 - December 2021 and during a second, shorter one in January 2022.
The plantation was divided into grid cells of 10 ha. In each grid cell, a sampling plot was
randomly located and in grid cells with a tree coverage larger than 5 ha, an additional
plot was selected (table A.1). In total, 64 square inventory plots were measured on the
plantation. Farms with less than 30 seedlings were not visited; consequently, only 17 out
of the 34 farms were visited. On these 17 farms (table A.2), a full inventory of the Melia

volkensii trees belonging to BGF was conducted. In both the farms and the plantation,
locations covered by clouds on the Pléiades satellite image were not visited. The following
tree variables were measured or taken note of in both the plantation and the farms:

- The location was measured using a garmin 60scx GPS during the first field campaign.
During the second field campaign, the location was measured with a phone. The coor-
dinates were notated in CRS WGS84/ UTM zone 37S. In five plots in the plantation, light
detection and ranging (LiDAR) scans were taken with an iPad Pro and later, locational
data was extracted from these scans.

- The diameter at breast height (cm) was measured using a measuring tape.

- The crown diameters (m) were measured in N-S and E-W directions using a measuring
tape.

- The height (m) was measured using the phone application ’Arboreal - Tree height’
during the first field campaign and with a TruPulse dendroscope during the second
field campaign.

- The tree age (years) was taken not of. In the plantation, this is indicated on the tree
trunk. On the farms, it was noted when the trees were planted.

- The species name was taken note of based on expert knowledge.

- The soil degradation due to water erosion was recorded based on visual assessment.
The tree was given a score depending on the type of soil loss, namely no erosion - 0,
sheet erosion - 1, rill erosion - 2 and gully erosion - 3 (Omuto, 2008).
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- The tree vitality was given a score from 1 (good) to 5 (dead) based on expert knowl-
edge.

The species frequency of the total amount of collected data per afforestation layout can be
found in table 3.2. In table 3.3, the descriptive statistics of Melia volkensii. The trees were
divided into diameter classes of 5 cm based on the diameter at breast height (DBH). Per
class, the table contains the average value of the crown diameter, the height, the tree age
and the tree vitality. The last column shows the percentage of trees per diameter compared
to the total amount of Melia Volkensii. In the plantation, one outlier can be noticed; this
could be a measuring error. The same descriptive statistics of Neem, Acacia and Baobab
are included in the appendix (table B.1) since these are less important for the remainder of
this study.

Table 3.2: Species frequency (%) of the collected data for each afforestation layout.

Species Frequency in field data (%)
Scientific name Common name Plantation Farms
Melia volkensii Mukau 78.91 100.00
Azadirachta Indica Neem 17.64 0.00
Acacia sp. Acacia 3.32 0.00
Adansonia sp. Baobab 0.12 0.00

Table 3.3: Descriptive statistics of Melia Volkensii. The trees were divided into diameter
classes of 5 cm based on the diameter at breast height (DBH). Per class, the table contains
the average value of the crown diameter, the height, the tree age and the tree vitality. The
last column shows the percentage of trees per diameter compared to the total amount of
Melia Volkensii.

DBH (cm) Crown
diameter (cm) Height (cm) Tree

age (year)
Tree

Vitality
Number of
trees (%)

Plantation
0.0 - 5.0 131.57 3.87 6.12 1.97 1.78
5.0 - 10.0 262.00 7.33 8.34 1.65 14.59
10.0 - 15.0 410.98 9.73 9.43 1.28 46.98
15.0 - 20.0 521.19 11.03 10.15 1.12 30.76
20.0 - 25.0 625.71 12.31 10.61 1.18 4.99
25.0 - 30.0 644.64 10.83 13.82 2.09 0.58
30.0 - 35.0 676.70 10.54 13.80 1.2 0.26
35.0 - 40.0 NA NA NA NA 0.00
40.0 - 45.0 NA NA NA NA 0.00
45.0 - 50.0 1150.00 12.20 15.00 1.00 0.05

Farms
0.0 - 5.0 163.43 12.2 2.85 1.71 16.82
5.0 - 10.0 300.70 5.35 3.36 1.57 45.60
10.0 - 15.0 441.33 7.63 3.96 1.28 28.25
15.0 - 20.0 590.69 9.11 4.78 1.20 6.83
20.0 - 25.0 745.11 9.80 5.00 1.36 1.84
25.0 - 30.0 718.90 12.20 5.00 3.00 0.66
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3.3 Regions of interest

3.3.1 Cloud mask

The cloud-covered areas and areas lying in the shade of the clouds on the Pléiades image
were excluded from executing the ITCD algorithms. Airbus provided a cloud mask with the
image delivery.

3.3.2 Tree mask

Before the detection of crowns, extraction of the forested areas is often performed (Bunting
and Lucas, 2006). Non-forested areas such as soil, shrubs, grass, clouds or other material
are frequently represented as bright pixels causing falsely detected trees (Brandtberg and
Walter, 1998). However, the plantation mostly consists of a forested area with little to no
bare soil. For this reason, the area is easily manually delineated and a shape file from BGF
was already available for the plantation in Kiambere. The delineation of trees in the farms
almost comes down to the individual delineation of tree crowns since the planting distance
is large to allow intercropping with crops. For this reason, the farms are also manually
delineated even though they still contain a lot of non-forested areas. Furthermore, this
study intends not to count all trees on the image, but only the trees on certain farms, so it
also serves as a region of interest.

Nevertheless, a tree mask was still created but used for the accuracy assessment as de-
scribed in section 3.6. The classification of non-forested and forested areas was the focus
of the second objective of this project. Forceville (2022) followed a multi-step procedure by
Vahidi et al. (2018) to mask out the candidate tree crown (CTC) class objects from non-tree
crown (NTC) class objects. Some adjustments were made to the original procedure due to
the lack of height information. In the first step, object primitives, which do not yet have any
meaning, were created in eCognition® Developer version 10.2 using a multiresolution seg-
mentation algorithm. In the second step, these object primitives were classified into CTC or
NTC. The elevated vegetation (rough texture) was separated from the understory (smooth
texture) by performing an edge extraction Lee Sigma filtering for detecting bright and dark
edges in the R band (sigma value = 5). A new band (LeeSigmaSum) was created by adding
the bright edge Lee Sigma band to the dark edge Lee Sigma band. The LeeSigmaSum was
then filtered with a Gaussian smoothing filter with a kernel size of 25 x 25 pixels, resulting
in the Roughness band. Lastly, the CTC class was separated from the NTC by thresholding
the R to Roughness ratio and the normalised vegetation index (NDVI, equation 3.1) (Vahidi
et al., 2018). For more detailed information about the procedure, turn to Forceville (2022).

NDV =
NR − R

NR + R
(3.1)
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3.4 Template matching

The main algorithm is the template matching algorithm (algorithm 1), which was pro-
grammed in Matlab® R2022A (as are the following). This algorithm locates the centre
of trees on a greyscale image within certain regions of interest (ROIs) using k amount of
templates. In the first step, the image is cropped using the ROIs, which will decrease the
computation time substantially. The following steps are thus repeated q times for each ROI
separately. In the second step, the similarity between the image and each template was
calculated using normalised cross-correlation (formula 2.5 section 2.3.2. In the third step,
the correlation matrix of each template is scanned to spot where it exceeds the threshold
similarity value. If the latter is the case, that point is a hit and marked as 1. In the fourth
step, multiple hits that probably originate from the same tree (false positives) are removed
using a minimum distance (figure 3.5), expressed in pixels (Erikson and Olofsson, 2005).
When two or more hits are too close to each other, the templates will overlap. The lower
the minimum distance, the more overlap between templates is allowed. This distance can
be user-defined based on expert knowledge, or the default distance can be used. The de-
fault allows templates to have a horizontal or vertical overlap of one pixel. When two or
more templates exceed the maximum overlap, the tree with the highest similarity to the
template is taken and all others are removed. The default minimum distance was selected
in the farms, while in the plantation, a minimum distance of 5 pixels (2.5 m) was chosen as
there is a fixed planting distance of 4 m in the plantation. In the final step, the points of
each ROI are merged together. The result is thus a georeferenced logical matrix where one
represents the centre of a tree.

(a) (b) (c) (d)

Figure 3.5: Example of how the default minimum distance works. Figure b shows the posi-
tions (=1) with a correlation value higher than the threshold. The top left and middle hit lie
within the default minimum distance and detect the same tree (a). The middle hit shows a
higher correlation (c), so the top left one is deleted. Figure d shows the corrected matrix.

In sections, 3.6 and 3.4.1 the parameter optimisation and accuracy assessment will be
further elaborated.
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Algorithm 1: Template Matching Algorithm
Data: greyscale image (I), geodata (R), k templates (T), threshold (Thr), minimum

distance (dmn, optional), q regions
Result: Tree locations in selected regions
for q = 1: regions do

Crop I using the selected region.;
for i = 1:k do

correlation = normxcorr2(T,I) ; // calculate normalized cross-correlation between I

and Ti
end
for i = size(I,1) do

for j = size(I,2) do
if correlation > Thr then

points(i,j) = 1 ; // tree at location

else
points(i,j)= 0 ; // no tree at location

end
end

end
for the entire points matrix do

Eliminate points lying within the minimum distance of each other.
if closer than the minimum distance then

Select the tree with the highest correlation
end

end
The corrected points matrix can be located back onto the original image using
geodata (R).

end
Tree locations = assembly of all georeferenced points matrices of each region.

3.4.1 Parameter optimisation

In the process described above, there are several critical inputs, namely the input greyscale
image, the templates and the threshold. The choice of these inputs largely influences the
performance of the template matching algorithm; thus, these parameters were optimised
or tested. Figure 3.6 shows the optimisation process, which will be described in the following
paragraphs.
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Figure 3.6: Workflow of the optimisation of the template matching algorithm. Firstly, a set
of greyscale images (or features) will be selected. For each feature, two sets of template
libraries will be generated using algorithm three or eCognition®. Secondly, for that set
feature, the template combination resulting in the highest precision and recall is obtained
by randomly selecting three templates and simultaneously optimising the threshold. Lastly,
the optimised algorithm is validated using a validation data set.
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The image

The first critical input is the greyscale image. Forceville (2022) has ranked 68 spectral,
textural and shape object features from most suitable to least suitable for the distinction
between candidate tree crowns (CTC) and non-tree crowns (NTC) for this given area. In
figure 3.7, the density functions of the classified objects (i.e. CTC and NTC) for the top five
highest-ranked features are plotted, visualising the separability between the two classes.
These five features are image object statistics based on a single band or a combination
of spectral bands (Benz et al., 2004). The mean band value (mean G, mean R, Mean B)
represents the mean brightness of an image object within a single band (Mishra and Crews,
2014). The standard deviation (StDev NIR) is the standard deviation of all pixels forming
an image object within a band (Mishra and Crews, 2014). The brightness represents the
mean value of the spectral mean values of the R, G, B and NIR bands of an image object
(Van Coillie et al., 2007). For this study, the top five features were tested to see which
results in the highest performance of the TM algorithm. However, because this is not an
object-based procedure, the features were calculated slightly differently: the true values of
the R, G, B and NIR bands were used instead of the mean or standard deviation and the
brightness was calculated as the mean value of the four spectral bands (i.e. B, G, R and
NIR) of each pixel.

Figure 3.7: Density functions of the classified CTC as well as NTC objects of the five highest-
ranked features (Forceville, 2022).
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Threshold

The second critical input is the threshold. Lower threshold settings lower the decision
boundaries and thus return more detections but increase the number of false positives (i.e.
decrease in precision) (Hung et al., 2012). Contrarily, higher settings reduce the number of
detections and consequently increase the number of false negatives (i.e. lower true posi-
tive rate). The threshold value was optimised for a given greyscale image and a given set
of templates using algorithm 2. Firstly, this algorithm calculates the true positive and false
discovery rate S times for each threshold in the [0,1] range with a predefined step size,
which is the inverse of the number of iterations (S). The recall and precision were calculated
using the training data. In this study, the number of iterations was set to 10. Secondly, an
exponential function was fitted through the recall and the precision. Both these functions
needed to be maximised in order to find the optimal threshold. Lastly, the intersection of
these two functions is considered the optimal threshold.

For the threshold optimisation in the plantation, solely the LiDAR data was used since this
is the only positional accurate data available.

Algorithm 2: Threshold Optimization
Data: greyscale image (I), geodata (R), k templates (T), number of iterations (S),

minimum distance (optional), regions, validation data, tree mask
Result: Optimal Threshold
Thr = 0 ; // Initialize threshold starting at zero

for i = 1:S+1 do
[recall(i), precision(i)] = TMacc(I,R,T1, ... Tk, Thr, regions, validation date, tree
mask); ; // Calculate precision and recall using the TMacc function.

Thr = Thr + 1/S; ; // Increase Thr with the stepsize (=1/S)

end
Fit an exponential function through the recall (f1) and precision (f2) array.;
Obtain the Optimal Threshold by finding the threshold where both functions intersect.;

Templates

Since it was not possible to use a large template library because this increased the compu-
tation time significantly, it was thus favourable to find an optimal combination of templates,
resulting in the highest performance of the TM algorithm. A maximum of 3 templates were
selected simultaneously because a higher number increased the computation time. More-
over, trial and error have shown that increasing the number of subgroups above three did
not increase the correlation between the generated templates and the training data further.
Firstly, two sets of templates were generated, empirical and synthetic, as will be explained
in the next two paragraphs. Secondly, the best combination of these two sets was found
by randomly selecting 100 combinations of one to three templates. For each combination,
the threshold was first optimised as described in section 3.4.1.

The empirical templates were created with eCognition® version 10.2 using the training
data. eCognition® allows for the choice in window size and group size. If the template
type ’grouped’ is selected, the algorithm attempts to find subgroups in the training data
and creates a separate template for each subgroup (Trimble, 2022). Templates with the
following window size were created: 9, 13, 15, 17 and 21. For each of these window sizes,
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varying group sizes (1-3) were selected, resulting in 30 individual templates. In addition to
the random selection of templates, ’the standard’ combination was also tested. This is the
combination of templates as they were generated in eCognition®.

A shape function and a radiometric model were needed to generate the second set of tem-
plates, as described in section 2.3.1. The shape function was approximated by formula 2.2,
which assumes that the tree crowns are rotationally symmetric about the vertical axis (i.e.,
equal r1 and r2). To simulate the interaction of the tree crown with the scene irradiance, the
model (equation 2.4) introduced by Gomes and Maillard (2014) was chosen, as described
in section 2.3.1. The tree’s shadow was generated using the simple hard shadow model
(Hung et al., 2012; Gomes et al., 2018). The clipping factor was implemented with the
buffer variable, so only part of the shadow was used. The clipping factor in the agroforestry
was set to 4 pixels and to 0 in the plantation. This creates a background buffer of 4 and
0 pixels around the tree crowns. The tree crown models were projected onto the xy-plane,
assuming the sensor was directly above the simulated tree.

The shape function and the radiometric model were combined in algorithm 3. The inputs of
this synthetic template generation algorithm are the following:

- the pixel size (m)

- Lm: the maximum brightness of a tree. This was estimated by calculating the mean
maximum brightness of the training and validation data.

- amb: diffuse light was estimated by sampling 50 points in cloud-covered areas of the
image and taking the mean of these values (Gomes et al., 2018).

- BR: the mean background reflectance was estimated by sampling 50 random points
on the image and taking the mean of these values.

- θ: the sun elevation (degrees)

- ϕ: the sun azimuth (degrees)

- D: the mean crown diameter (m)

- h1: the total tree height (m)

- h2: the crown height (m)

- buffer: a variable determining how many additional background pixels will be added
to the crown diameter.

The input tree parameters were estimated by finding the relation between the mean crown
diameter, crown height and the total tree height of the data and the diameter at breast
height. For each upper limit of the diameter classes (table 3.3), the corresponding tree
parameters were estimated and a template was generated.
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Algorithm 3: Synthetic template generation
Data: Lm, amb, BR, the pixel size (m), θ, ϕ, D, h1, h2, buffer
Result: Template
Generate an ellipsoid with dimensions D and h2 and h1 above the xy-plane.

for each facet on the ellipsoid do
θ = the angle between the local surface normal and the incident angle of the sun.
if θ > 90° then

L = amb // this facet of the tree is not directly illuminated

else
L = Lm * cos(θ) + amb

end
end
Generate the shadow of the tree crown by finding the incident light vectors that are
tangential to the ellipsoid and projecting them onto the ground plane.

Project the tree crown and the shadow onto the xy-plane with the pixel size using linear
interpolation.

Give all background pixels the background radiation BR.

Crop the generated template so it has a window size of the maximum diameter + the
buffer. If this results in an even window size the 1 row and 1 column are added.

3.5 Local maximum filtering

Since simply applying a local maximum filter (LMF) on the image would lead to many falsely
detected trees, a pre-processing method was tested and evaluated. The method was tested
on the same five features as in the TM method. The pre-processing method is an adjusted
version of the procedure proposed by Khan and Gupta (2018) to detect trees in a dense
forest. In several consecutive morphological reconstruction operations, the image is filtered
and smoothed to enhance the treetops by removing small holes and dots that are usually
noise. The morphology-based tree detection is implemented as follows:

1. Opening

2. Closing

3. Opening by reconstruction

4. Closing

5. Closing by reconstruction

6. Apply non-overlapping local maximum filter

A disk with a diameter of 5 pixels was used as a SE for morphological operations. The
non-overlapping LMF was carried out using a moving 6 x 6 window.
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3.6 Accuracy assessment

True positives (TP) were calculated as every tree from the validation data set that was
found. False negatives (FN), were calculated as every validation point that was not found.
Some problems surfaced when trying to determine the false positives (FP) and true neg-
atives (TN). To calculate FP, a full inventory of the selected farms was needed, but not
available. To partially solve this problem a tree mask, created by Forceville (2022), was
used as described in section 3.3.2. Every positive point, which does not lie inside the tree
mask is considered false. However, this approach assumes that the tree mask is 100 %
accurate. Nevertheless, this was not the case and some mistakes were introduced. TN
are the negative detections lying in the area between the trees (Hung et al., 2012). Since
no negative points were generated by the TM algorithm nor the LMF, it was not possible to
calculate TN. This problem was omitted by using precision and recall which does not require
counts on TN (Hung et al., 2012). The tree detection algorithm performs well if the recall or
true positive rate (equation 3.2) is high and the false discovery rate (equation 3.3) is low.
The lower the FDR, the higher the precision (equation 3.4). The final performance (F-score)
was determined by the harmonic mean of the two measures (equation 3.5) (Salamí et al.,
2019). The F-score, also known as F1-score or F-measure, is a measure that combines
precision and recall to evaluate the performance of a test or model Manning et al. (2008).
The precision is the proportion of correctly identified positive outcomes among all positive
predictions. The recall, also known as sensitivity or true positive rate, is the proportion of
correctly identified positive outcomes among all actual positive outcomes. The F1 score is
calculated as the harmonic mean of precision and recall, with a value of 1 indicating perfect
performance and a value of 0 indicating the worst possible performance.

TPR =
TP

TP + FN
(3.2)

FDR =
FP

TP + FP
(3.3)

precson = 1 − FDR (3.4)

F =
2

1
precson +

1
rec

(3.5)

For the accuracy assessment on the plantation, there is no tree mask available. The valida-
tion data also had a very low spatial accuracy of +/- 5m. For this reason, only a whole plot
assessment was performed. In each plot a full inventory was available and the plots were
manually delineated. However, this was not 100% accurately done, some mistakes were
introduced. The plot-level accuracy (PLA) was computed by comparing the total number
of trees (d) detected by the TM algorithm or LMF to the reference count (n) (equation 3.6).
The closer the PLA is to 1, the better the algorithm performs. Lamar et al. (2005) have men-
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tioned that the PLA can be misleading due to commission and omission errors cancelling
each other out and providing no information about tree-location accuracy.

PLA =
d

n
(3.6)

After the optimisation process as described in section 3.4.1, the algorithm was run again
and validated with an independent validation dataset. This results in F-score* and PLA*.

33



4. RESULTS AND DISCUSSION

In the following sections (4.1 and 4.2), the results of the template-matching (TM) algorithm
and the local maximum filter (LMF) will be discussed. The results of the TM algorithm
in the different afforestation layouts are discussed separately, while those of the LMF are
discussed together. Followed by a method comparison in section 4.3 and a recommendation
segment in section 4.4.

4.1 Template matching

Firstly, the radiometric and geometric parameters estimation is needed for algorithm 3 as
discussed in section 4.1.1. Secondly, the results of the template matching algorithm in the
farms and the plantation are discussed separately in section 4.1.2 and 4.1.3.

4.1.1 Tree parameters

The input tree parameters as described in section 3.4.1 needed for the template generation
algorithm 3 are firstly estimated. This comes down to estimating the following geometric
parameters:

- D: the mean crown diameter (m)

- h1: the total tree height (m)

- h2: the crown height (m)

and the following radiometric parameters:

- Lm: the maximum brightness of a tree. This was estimated by calculating the mean
maximum brightness of the training and validation data.

- amb: diffuse light was estimated by sampling 50 points in cloud-covered areas of the
image and taking the mean of these values (Gomes et al., 2018).

- BR: the mean background reflectance was estimated by sampling 50 random points
on the image and taking the mean of these values.
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Geometric parameters

The input geometric parameters are estimated by finding the relation between the diameter
at breast height (dbh) and the mean crown diameter and the dbh and the total tree height.
The crown height shows the best relation with the total height instead of the dbh. The
resulting empirical equations and their corresponding R² can be found in table 4.1. In both
the farms and the plantation, the total height shows the best fit with the crown height with
an R² of 0.83 and 0.81. The DBH in the farms shows a good fit with the crown diameter (R²
= 0.74) and the total height (R² = 0.74), while in the plantation, this is much lower with an
R² of respectively 0.59 and 0.41. The decreased fit could be due to the high crown closure
and overlap in the plantation, which made it harder to accurately measure the total height
and the crown diameter in the field. In the agroforestry layout, it was possible to distinguish
tree crowns from one another since the trees were planted with wide spacing and hardly
any crown overlap occurred.

Table 4.1: The empirical formulas used to estimate the crown diameter (D), the total height
(h1) and the crown height (h2) of Melia Volkensii in the farms and the plantation in function
of the diameter at breast height (DBH). The R² is mentioned next to the formulas.

Farms

D (cm) = 61 + 31 dbh (cm) (4.1) R² = 0.74

h1(m) = 2.1 + 0.43dbh(cm)(4.2) R² = 0.74

h2(m) = −1.4 + 0.76h1(m)(4.3) R² = 0.83

Plantation

D (cm) = 70 + 26 dbh (cm) (4.4) R² = 0.59

h1(m) = 4.8 + 0.36dbh(cm)(4.5) R² = 0.41

h2(m) = −2.1 + 0.78h1(m)(4.6) R² = 0.81

Radiometric parameters

Table 4.2 shows the estimated radiometric parameters used for the template generation
algorithm. As expected, Lm shows the highest reflectance in the NIR band and the lowest
in the blue band (Lillesand et al., 2015). The green band has a lower Lm than the red band.
This could be explained because the tree mask (section 3.3.2) still contains background
(BR) pixels, which have high reflectance in the red spectral band. The soil samples (BR)
also contained some vegetation since crops and grasses are present between the trees,
which can be noticed in the high NIR and green spectral reflectance values.
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Table 4.2: List of parameters used for the template generation algorithm for each feature.
Lm: maximum radiance, amb: ambient, diffuse light and BR: background radiance.

Feature Lm amb BR
Red 1315.667 727.200 1739.000
Green 1078.792 574.000 1189.182
Blue 829.450 417.750 894.727
NIR 2978.106 1645.050 2507.455
Brightness 1550.500 841.000 1582.600

4.1.2 Farms

The results of the optimisation process and final results in the farms can be found in table
4.3. The empirical and synthetic templates of the features resulting in the highest F-score*
are visualised in figure 4.1. The complete template library for each feature can be found
in appendix C.1 with further explanation about the used numbering. Figure 4.2 visualises
the results for the features and template combinations resulting in the highest performance
using the empirical and synthetic templates. The F-score of the brightness feature in the
random combination is the highest during the training process, while the F-score* of the
green feature in the random combination is highest for the final validation. Moreover, the
difference is less than 0.006. For this reason, both were visualised and compared.

Table 4.3: Results of the template matching optimisation process for each feature with the
optimal empirical (standard and random) and synthetic template combination and thresh-
old. Both the overall performance during the training stage (F-score) and the final validation
stage (F-score*) are displayed.

Red Green Blue NIR Brightness
Standard
Templates 34 28, 29 25, 26 19, 20 43
Threshold 0.668 0.501 0.603 0.855 0.450
recall 0.503 0.518 0.532 0.364 0.462
precision 0.479 0.470 0.554 0.250 0.296
F-score 0.491 0.493 0.543 0.297 0.361
F-score* 0.357 0.359 0.393 0.176 0.242

Random
Templates 16, 40 13, 19 26, 37 17,37 4, 7, 12
Threshold 0.761 0.668 0.591 0.834 0.702
recall 0.541 0.566 0.545 0.484 0.547
precision 0.562 0.579 0.484 0.482 0.615
F-score 0.552 0.573 0.513 0.483 0.579
F-score* 0.359 0.413 0.377 0.379 0.411

Synthetic
Templates 3 1, 4 3, 4 1, 3, 5 3, 4, 5
Threshold 0.287 0.337 0.348 0.454 0.315
recall 0.378 0.125 0.152 0.222 0.081
precision 0.125 0.050 0.071 0.088 0.024
F-score 0.187 0.071 0.097 0.126 0.037
F-score* 0.129 0.061 0.075 0.062 0.044
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Figure 4.1: Template library of the farms of empirical (upper and middle) synthetic (lower)
template combinations resulting in the highest performance for each feature.
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(a) Brightness - T4, T7 and T12 (b) Green - T13 and T19 (c) Red - Syn T2 and T6

Figure 4.2: Visualisation of the detected trees (red) in farms 1, 5, 14 and 17 with the tem-
plate matching algorithm for the feature brightness (column a), green (column b) and red
(column c) with the template combination resulting in the highest performance as indicated
in table 4.3. The ground truth validation (green) and training (blue) data are marked on the
image. The size of the circles represents the crown diameter as measured during the field
campaign.
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There are three remarks that can be made when analysing table 4.3. Firstly, the TM al-
gorithm using the synthetic templates has a low recall and even lower precision than the
empirical templates. This can also be observed in figure 4.2c, where the synthetic T3 tem-
plate overdetects many trees by detecting false positives on the ridges of the farmlands.
The optimal threshold values for the synthetic templates are much lower than those of the
empirical templates, making them more susceptible to overdetection (Hung et al., 2012)
and could explain the lower precision. The reason for this low threshold is because algo-
rithm 2 tries to find a balance between the recall and precision (section 2.3.2 and 3.4.1). If
the simulated templates do not resemble the ground truth data well, it is hard for the TM
algorithm to find a match between the image and a template, resulting in a low recall and
thus, the threshold is lowered. It might be that the empirical templates correlate better
with the Melia volkensii trees than the synthetic templates do. The shape function is ap-
proximated by formula 2.2, which assumes that the tree crowns are rotationally symmetric
about the vertical axis (i.e., equal r1 and r2). Compared to figure 4.3, this seems to fit the
trees not growing well under competition (i.e. the farms). Improving algorithm 3, by includ-
ing more parameters, e.g. surface properties and leaf area distribution (Pollock, 1996) in
the radiometric and geometric model (section 2.3.1), could lead to higher performance.

Figure 4.3: Picture of Melia Volkensii trees taken during the field visit in January 2022 in the
plantation.

Secondly, it is also noticeable that including more templates does not always lead to higher
performance: the green feature with T13 and T19 almost scored just as well as the bright-
ness feature with T4, T7 and T12.

Lastly, for each feature, except for synthetic - brightness, the TM algorithm has a higher
performance during the training stage than during the final validation. Because of this, the
recall rate during the training stage (recall) and the recall rate during the final validation
(recall*) were compared per diameter class in table 4.4. The percentage of training data and
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validation data per class are given in the last two columns. It was impossible to generate
an overall performance per DBH class since false positives do not belong to any class.
For the empirical templates, the less data available for a given class during the training
stage, the higher the recall rate. This is not the case for the final validation, where the
largest trees (the smallest data set) went undetected. For the synthetic templates, there is
no pattern detected, except that the fifth class has the highest recall rate in both stages.
It was expected that the highest recall rate would be observed in the classes where the
corresponding crown diameter is more or less equal to the window size of the selected
templates. The T4 empirical template has a window size of 13 x 13 pixels (6.5 m x 6.5 m).
However, as is seen in figure 4.1, these templates contain a border of background pixels
of approximately 2 pixels wide, making this template correspond with crown diameters of
more or less 4.5 m. When comparing this crown diameter to table 3.3 this corresponds
to diameter class 3. Following the same reasoning for the empirical T7 and T12, these
templates correspond to DBH classes 4 and 6. No clear relation was found between the
recall rate and the window size. The T3 synthetic template was simulated based on a tree
with DBH of 15 cm, so this template belongs to class three’s upper boundary and class
four’s lower boundary. However, these do not have the highest recall(*) rate.

Table 4.4: Recall rate per DBH class during the training stage and the final validation (*) for
the empirical templates and the feature brightness and the synthetic template combination
and the feature red. The right column shows the number of trees per class in the training
data set and the validation data set.

DBH (cm) recall recall* Percentage of trees (%)

Emperical Synthethic Emperical Synthetic training validation
0.00 - 5.00 0.7011 0.322 0.333 0.410 16.76 16.74
5.00 - 10.00 0.6585 0.333 0.378 0.357 47.40 42.06
10.00 - 15.00 0.6752 0.319 0.103 0.400 30.25 24.89
15.00 - 20.00 0.7273 0.864 0.346 0.423 4.24 11.16
20.00 - 25.00 1 1 0.455 0.818 0.58 4.72
25.00 - 30.00 0.750 0.250 0 0 0.77 0.49

It is also important to note that the precision and, thereby, the performance are largely in-
fluenced by the accuracy of the vegetation mask generated by Forceville (2022). Forceville
(2022) has concluded in the study that the tree mask has some shortcomings: some small
trees and some trees on ridges were not included, while on the hand, other land cover
classes and ridges containing crops (and no trees) were included. So it is impossible to
conclude whether the precision is being over- or underestimated.

4.1.3 Plantation

The results of the optimisation process and final results can be found in table 4.5. The
empirical and synthetic templates of the features resulting in the best PLA* are visualised
in figure 4.4. The complete template library for each feature can be found in appendix
C.2 with more explanation about the used numbering. Figure 4.5 visualises the results for
each feature and template combination resulting in the best PLA* using the empirical and
synthetic templates.
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Table 4.5: Results of the template matching optimisation process for each feature with the
optimal empirical (standard and random) and synthetic template combination and thresh-
old. Both plot level accuracy (PLA) during the training stage and the final validation stage
(PLA*) are displayed. A PLA greater than 1 indicates overdetection and a PLA smaller than
1 indicates underdetection.

Red Green Blue NIR Brightness
Standard
Templates 10, 11, 12 34 13, 14, 15 10, 11, 12 1, 2, 3
Threshold 0.058 0.005 0.047 0.200 0.505
PLA 2.576 2.358 2.640 2.511 2.731
PLA* 2.740 2.546 2.951 2.881 0.787

Random
Templates 31, 37, 29 10, 31, 43 8, 15 43, 29, 4 27,15,43
Threshold 0.201 0.296 0.070 0.032 0.090
PLA 2.850 2.700 2.596 2.608 2.590
PLA* 2.909 2.694 2.810 2.943 2.842

Synthetic
Templates 1, 4, 6 2, 3, 6 2, 4, 5 1, 2, 3 2, 6
Threshold 0.310 0.284 0.294 0.308 0.275
PLA 3.137 3.048 3.075 2.693 2.843
PLA* 3.339 3.083 3.056 3.344 2.967
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Figure 4.4: Template library of the plantation of the standard and random combinations
resulting in the highest performance for each feature.
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(a) True colour images (b) Brightness - T1, T2 and T3 (c) Brightness - syn T2 and T6

Figure 4.5: Visualisation of the detected trees (red) in the plantation with the template
matching algorithm for the feature brightness for both the empirical (b) and synthetic (c)
template combination resulting in the highest performance as indicated in table 4.5. The
first row shows a dense plot, the second row an intermediate plot and the third a sparse
plot.
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Two remarks can be made when analysing table 4.5. Firstly, in most cases, PLA is very
high, meaning that the TM algorithm overdetects trees. Only the brightness feature with
empirical T1, T2 and T3 underestimates the number of trees. However, when visually
assessing the results, it looks like the detected trees have quite a good spatial accuracy
and there is not as much overdetection as the PLA predicts. There also seems to be no
clear difference in performance between the plots with different tree densities. A reason
for the incorrect PLA could be that the manual delineation of the plots was inaccurately
done, causing an incorrect PLA.

Figure 4.6: Picture of Melia Volkensii trees taken during the field visit in January 2022 the
plantation.

Secondly, when comparing the templates in figure 4.4, the tree in the synthetic and empir-
ical templates do not resemble each other. The empirical templates have a better PLA (i.e.
closer to 1). However, this is not apparent in figure 4.5, making it hard to draw a conclu-
sion whether the empirical templates are an incorrect approximation of the trees or if the
geometric parameters of the synthetic templates are incorrect. Both options are plausible
since, on the one hand, the ground truth data sample has low spatial accuracy and on the
other hand, many assumptions about the radiometric and geometric properties were made
for the template generation. As previously stated, the shape function was approximated
by equation 2.2, which assumes that the tree crowns are rotationally symmetric about the
vertical axis (i.e., equal r1 and r2). Compared (figure 4.6), this shape function does not
fit as well in closed stands in the plantation. Nonetheless, this function was applied to
open and closed stands on the plantation. Moreover, to simulate the interaction of the
tree crown with the scene irradiance, the model (equation 2.4) introduced by Gomes and
Maillard (2014) was chosen, as described in section 2.3.1. It is important to note that this
model assumes that the crown is an opaque surface. As stated in section 2.3.1, this is a rea-
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sonable assumption for broad-leaved trees with leaves near the crown envelope (Pollock,
1996). However, this is a difficult assumption for mature trees growing under competition
(i.e. the plantation). Still, this model was used in both layouts since no further knowledge
about the leaf area distribution is available. Just as in the farms with the synthetic tem-
plates, the threshold is very low, making the template matching algorithm susceptible to
overdetection (Hung et al., 2012) and suggesting that the templates do not correlate to the
ground truth data very well.

4.2 Local maximum filtering

The results of the local maximum filtering approach are shown in table 4.6. The perfor-
mance of the LMF was validated using the training data set and the validation data set
so it could be compared to both stages of the TM algorithm. The features resulting in the
highest F-score* and PLA* are visualised in figure 4.7b. The smoothened images are shown
in figure 4.7b. The precision in the farms is very low, as can be seen in figure 4.7, where the
whole background is detected as trees due to noise in the image. This result is expected as
the method proposed by Khan and Gupta (2018) was developed for dense forests. After a
visual assessment, the results on the plantation show better precision than the results on
the farms. However, still, some trees are being detected multiple times. The trees in the
plantation show a bright tree crown top, which is not present in the farms where the back-
ground has many bright pixels. A possible way to improve the LMF is by using a varying
window size using the semivariance as proposed by Wulder et al. (2000) and described in
section 2.4. However, it is not expected that this will improve the detection of trees in the
farms since there are many non-forested areas that will still be detected using this method.
Brandtberg et al. (2003) has mentioned that using an LMF where no trees are present will
produce many false positives, which is always the case in farms. Implementing a method
which performs edge detection prior to applying the LMF as proposed by Wang et al. (2004)
and further elaborated in section 2.4 could work well in sparsely forested areas.

Table 4.6: Result for the farms and plantation for the features red, green, blue, NIR and
brightness.

Red Green Blue NIR Brightness
Farms
recall 0.301 0.357 0.380 0.455 0.345
precision 0.010 0.012 0.013 0.016 0.012
F-score 0.020 0.023 0.025 0.030 0.023
F-score* 0.021 0.023 0.023 0.014 0.022

Plantation
PLA 4.0069 4.003 4.000 4.016 3.959
PLA* 3.4544 3.457 3.440 3.494 3.425
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(a) Smoothened Image (b) RGB with results

Figure 4.7: Results from the LMF algorithm within the first column the smoothened image
and in the second column the results. The first row shows farm 14, the second row is a
dense plot in the plantation, the third row is an intermediate dense plot in the plantation
and the fourth row is a sparse plot in the plantation.
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4.3 Method comparison

In the farms, the TM algorithm outperforms the LMF since, in the latter, the bright back-
ground pixels cause many false positives. The template matching algorithm also outper-
forms the LMF in the plantation since many crowns are detected multiple times. However,
due to the inaccurate PLA, it is hard to draw a definite conclusion about all plots in the
plantation since the difference is only subtle. This is less of a problem in the farms because
the difference in performance is visually observed. When comparing the plantation versus
the farms, the LMF performs better in the plantation. Again, it is hard to compare the per-
formance of the TM algorithm in the farms and the plantation, but it seems that TM works
well in both layouts.

Comparing the performance of TM with the synthetic and the empirical templates, it is ap-
parent in the farms that the empirical templates perform better. The same statement can
also be made with caution in the plantation. This means that there is still room for improve-
ment of the template generation algorithm by optimising the geometric parameters in table
4.1.1, the radiometric parameters in table 3.4.1, the radiometric model (formula 2.4) and
the geometric model (formula 2.2). Even though the synthetic tree model underperforms
compared to the empirical template, it is still useful to optimise the template generation
algorithm. Using a synthetic tree model has the benefit that no new ground truth data sam-
ples need to be made every time a new tree count is performed. Only the satellite image
parameters (pixel size, sun elevation and sun azimuth) need to be adjusted, making it less
labour-intensive.

A total tree count in both layouts was performed for a final comparison using both methods.
The results can be seen in table 4.7. In all 17 farms, this result is 741 trees with the TM
method and 25 775 with the LMF. The latter is an overestimation and the TM is the most
reliable. During the field visit, 759 trees were counted (after excluding trees with a crown
area smaller than 0.25 m²) in these 17 farms. Even though this is not a complete inventory,
it gives an indication that the TM results are in the correct size order. The total count for
the plantation is only performed on the non-cloud-covered areas, which comes down to 265
ha. This results in 450 trees/ha using the TM and 1120 trees/ha using the LMF. Assuming all
trees in the plantation were planted with a planting distance of 4 m and no trees have died,
this results in 625 trees/ha. This calculation again gives an indication that the TM results
are more reliable.

Table 4.7: Total tree count performed in all 17 farms and the non-cloud-covered area in
the plantation (265 ha) using the template matching method (TM) and the local maximum
filtering method (LMF).

Farms Plantation
TM 741 119 274
LMF 25775 296 998
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4.4 Recommendations

The proposed methods cannot accurately monitor the afforestation efforts of BGF. Since
working with sub-par validation and training data and satellite imagery and only simplified
ITCD algorithms are used. In further developing a sustainable monitoring tool, some ad-
justments can be made, leading to higher performance. Some recommendations are made
on how to improve the data collection (section 4.4.1) during a field survey, the algorithm
optimisation (section 4.4.2) and the used imagery (4.4.3).

4.4.1 Data collection

The inaccurate location of the training data was one of the most demanding challenges
during this study, complicating the template matching training stage (section 3.4) and the
validation of the detected trees on the plantation. The data points in the farms were man-
ually corrected by Forceville (2022); however, this was a very time-consuming process.
The handheld Garmin 60 csx global positioning system (GPS) had a positional accuracy of
three meters at best, which is proven to be insufficient. Nilsson et al. (2017) have used
a high-precision GPS receiver, the Spectra Precision MobileMapper 120, giving a positional
accuracy of 1 m. Moreover, between 2024 and 2030, the African satellite augmentation
system (ASAS) will be available in Kenya (Ilčev, 2018). GPS devices compatible with this
system will have improved positional accuracy (Forceville, 2022; Ilčev, 2018). Investing in
a high-precision GPS will be not only beneficial for the development of the monitoring tool
but also valuable for the long run for the monitoring itself since, in the farms, it will be
necessary to register the coordinates of trees when being planted. This is because farmers
grow their Melia Volkensii trees among the trees planted by BGF, making it impossible to
distinguish which one belongs to who. This will help to monitor whether a tree planted by
BGF in the farms is still alive after one or more growing seasons and how much it has grown.
This problem does not occur on the plantation because all trees are being planted by BGF.

In addition to the more accurate tree locations, more full inventories of the sample plots
in the plantation need to be made as well to improve the validation stage of the methods.
Since in the field survey often trees were not measured because they were different from
the trees that were planted by BGF e.g. the baobab trees. However, it is necessary to
measure all trees in the plots so the true negatives and false positives can be calculated
without the need of a vegetation mask. Furthermore, the coordinates of the outlines of
the sample plots in the plantation also need to be stored so they can be located more
precisely on the image. The outline of the plots was manually determined, which introduced
additional errors to the validation of the obtained tree points.

4.4.2 Algorithm optimisation

The additional data which needs to be collected, as described above, will aid the train-
ing stage of the TM algorithm. When more positional accurate training data is available,
the determination of the optimal template combination, the best feature and the optimal
threshold can be more precise. When this data is available better conclusion can be made
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about the final results since now, in both the plantation and the farms, these need to be
cautiously interpreted. By obtaining more data about the trees, possible better relations
between the diameter at breast height and the height, crown height, and crown diame-
ter could be found, resulting in better templates. Moreover, different geometrical models
should be used on farms and plantations. As described in section 4.1.3, the used geomet-
rical model, a round sphere, does not fit the trees in dense plots in the plantation well.
The synthetic trees can also be improved by refining the radiometric model used for the
template generation since now many assumptions have been made (Pollock, 1996). TM
using the synthetic templates could also be improved by accounting for more background
variations: bare soil and soil planted with crops. In further research, using a larger template
library and applying more than three templates can be further explored. Also testing out
other features such as the normalized difference vegetation index (NDVI), the first princi-
pal component of a principal component analysis (PCA) (Wang et al., 2004) and the ratio
between a red edge band and a red band (Bunting and Lucas, 2006) can be considered. To
find the optimal threshold resulting in the best performance (i.e. balancing overdetection
and overdetection), the threshold is increased from 0 to 1 with 0.1 per iteration. Taking
a smaller stepsize and, thus, more iterations will lead to a more accurate threshold de-
termination. However, increasing the number of templates, features and the number of
iterations will increase the computation time, making the algorithm’s training stage more
time-consuming. Finding the optimal threshold (number of iterations = 10) and the op-
timal template combination (maximum three templates and number of iterations = 100)
took about four hours per feature. Another possibility is to explore the method proposed
by Maillard and Gomes (2016), which combines template matching with a marked point
process and see if the performance increases.

It is possible to improve the local maximum filtering process by using a varying window size
using the semivariance as proposed by Wulder et al. (2000) and described in section 2.4.
The pre-processing method was proposed by Khan and Gupta (2018) and developed for
dense forests. Other methods, such as the method proposed by Wang et al. (2004), which
performs an edge detection before applying a local maximum filter, could be explored in
further research. However, Brandtberg et al. (2003) has mentioned that using an LMF
where no trees are present will produce many false positives, which is always the case in
farms. For this reason, it is recommended to only apply the LMF to densely forested areas
in further research.

4.4.3 Satellite and aerial imagery

To detect the smallest trees, the scale-space method can be further explored: detecting
trees of different sizes in the same greyscale image at different scale levels (Larsen et al.,
2011) and using satellite and aerial imagery with a higher spatial resolution so a higher
crown-to-pixel size ratio can be obtained for the smallest trees (Pouliot et al., 2002) (sec-
tion 2.1). It is expected that template matching will perform better on cm-level imagery.
Additional to satellite imagery, other data sources can be further explored. Unmanned
Aerial Vehicles (UAVs) are a technology that can provide high-resolution information, for
example, 20 cm/pixel, over small areas cost-effectively (Hung et al., 2012). Dainelli et al.
(2021) has mentioned that when UAVs are appropriately used, they can constitute a valu-
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able tool in monitoring and mapping forests. Many studies have used aerial images in
combination with TM and LMF, e.g. Larsen and Rudemo (1998), Pouliot et al. (2002), Erik-
son (2004). Kempf et al. (2021) has used oblique view aerial images to generate a digital
surface model for tree detection. Zhen et al. (2016) has mentioned that combining passive
and active remotely sensed data may increase performance of ITCD. Many studies have
developed methods which incorporate Light Detection And Ranging (LiDAR) data with UAVs
which can be used- to collect high-resolution imagery and LiDar data. However, it is also
important to note that using UAVs has some drawbacks related to technical issues (Dainelli
et al., 2021). Due to battery duration, the data cannot be effectively acquired for the whole
extent of a large area, which is the case for BGF. There are also limitations on airspace use
enforced by policy and regulations (Dainelli et al., 2021).
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Is it possible to accurately count Melia Volkensii trees using very high resolution (VHR)

satellite imagery? In this thesis, two methods were proposed for detecting Melia Volkensii

trees in an agroforestry layout (i.e. farms) and in a plantation in a study area in Kiambere.
Unfortunately, even though the methods show promising results, in this study, the trees
cannot be accurately counted with the PLéiades satellite image.

Is there a different method needed for the different afforestation layouts? The first method,
template matching (TM), uses geometrical-optical tree models based on training data (i.e.
empirical templates) or based on illumination and radiance parameters and tries to find
where this model matches the image using the normalised cross correlation similarity mea-
sure. The TM algorithm takes the trees’ radiometric and geometric properties into consid-
eration (Wang et al., 2004) and can exploit contextual information such as the shadow cast
by trees (Maillard and Gomes, 2016) and soil reflection. Before matching the templates to
the image, the input parameters, namely the greyscale image (i.e., which feature to use),
the threshold and the template combination algorithm, were optimised. The TM algorithm
shows promising results in both layouts, with a performance of 0.411 in the farms with
the brightness feature and empirical templates T4, T7 and T12 and a plot level accuracy
(PLA) of 0.787 in the plantation with the brightness feature and empirical templates T1,
T2 and T3. Unfortunately, due to the lack of spatially accurate ground truth data, no per-
formance in the plantation could be calculated. Moreover, in the plantation, the PLA must
be interpreted cautiously since the plots were manually delineated and could contain er-
rors. The synthetic templates underperform compared to the empirical templates in both
layouts. However, optimising the template generation algorithm is still useful since using
a synthetic tree model has the benefit that no new ground truth data samples need to be
made every time a new tree count is performed. Only the satellite image parameters (pixel
size, sun elevation and sun azimuth) need to be adjusted, making it less labour-intensive.
The second method, local maximum filtering, is a technique that assumes that points with
the highest brightness (i.e. digital number) within a search window are possible tree loca-
tions (Pouliot et al., 2002; Quackenbush et al., 2000). Mathematical morphology procedures
(opening, closing, opening/closing by reconstruction) were used to filter the image before
applying a non-overlapping local maximum filter. The LMF performs sub-par compared to
TM, with only a performance of 0.023 in the farms using the green feature and a plot level
accuracy of 3.425 with the brightness feature. So to conclude: there is no different method
needed in the different afforestation layouts since TM performs well in both.

Which method has the highest performance? In this particular case study, the template
matching approach performs superior to the LMF. However, further development and re-
search are needed to optimise and improve the algorithm to accurately detect Melia Volken-

sii in both layouts.
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To accurately monitor the afforestation efforts of Better Globe Forestry, more spatial ac-
curate tree positions are needed, the TM algorithm needs further optimisation and higher
resolution imagery is needed.
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APPENDIX A

LOCATIONS OF THE DATA

COLLECTION

Table A.1: Location of the corners of the samples plot registered in WGS 84 (Worldwide
Geodetic System 84) datum and the Universal Transverse Mercator (UTM) zone 37S projec-
tion.

No. East (UTM) South (UTM) No. East (UTM) South (UTM)
1 378648.255 9925451.187 23 379315.064 9924069.307
2 379216.417 9925145.643 23 379402.699 9924079.318
3 379353.029 9925153.344 24 378780.631 9923663.785
4 378832.919 9924920.164 24 378808.354 9923739.868
4 378703.547 9925004.565 25 378982.699 9923712.607
5 379034.833 9924932.024 25 379224.965 9923860.000
5 379115.537 9924931.099 26 379320.455 9923706.447
6 379408.320 9924933.410 26 379470.466 9923782.838
6 379607.000 9925038.448 27 378861.797 9923560.440
7 379745.922 9924933.102 28 379192.468 9923520.550
8 378439.256 9924812.354 28 379011.038 9923494.060
10 379097.518 9924818.514 29 379512.512 9923444.775
10 378929.641 9924767.843 29 379313.986 9923498.834
11 379619.860 9924678.745 30 378545.065 9923266.117
11 379312.600 9924677.821 31 378925.868 9923148.835
12 379825.394 9924693.685 31 379278.409 9923332.498
13 378832.765 9924508.173 32 379429.883 9923188.031
13 378690.609 9924478.757 34 378795.340 9922944.302
14 379133.095 9924439.175 35 379009.883 9923043.180
14 379047.771 9924513.410 36 379631.489 9923008.604
15 379492.952 9924524.422 36 379580.818 9923005.369
15 379491.874 9924596.963 37 378339.685 9922728.912
16 379740.223 9924596.501 38 378576.484 9922785.281
17 378879.278 9924186.590 38 378531.203 9922809.154
18 379248.992 9924251.661 39 378924.712 9922713.356
18 379039.300 9924147.932 40 379453.293 9922811.233
19 379329.080 9924293.861 41 378476.759 9922418.879
19 379405.009 9924236.722 42 378728.189 9922552.256
20 379725.823 9924356.776 45 378438.640 9922260.012
21 378882.897 9923940.242 46 378568.013 9922269.253
22 379004.877 9924051.287 46 378600.125 9922196.250
22 379097.287 9924064.532 49 378596.737 9922076.272
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A. Locations of the data collection

Table A.2: Location of the farms registered in WGS 84 (Worldwide Geodetic System 84)
datum and the Universal Transverse Mercator (UTM) zone 37S projection. The village and
name of the farmer are mentioned in the last two columns.

No. East (UTM) South (UTM) Village Name of farmer
1 381295.869 9925051.410 Katithini Stephene Mulwa Mukiti
2 381118.480 9924378.304 Katithini Peter Muimi Muthui
3 381653.000 9923907.733 Katithini Peter Mutua Gitune
4 384629.458 9922789.833 Mwangu Muteti Muthui
5 386408.941 9921059.196 Maskanioni Bonface Mutua Musyoka
6 386404.878 9919557.809 Masukanioni Peter Munyoki Muthui
7 386873.694 9920308.766 Masukanioni Peter Kimanzi Makau
8 388171.355 9921223.529 Masukanioni Peter mwendwa Francis mutemi
9 386361.811 9920473.338 Masukanioni Samuel musili munyoki
10 390655.912 9924837.998 Koriro Benson Kimanzi Mwendwa
11 388753.026 9925307.343 Kalatine Mboli Ngukuni
12 388313.971 9925142.750 Kalatine Martha Mwendwa
13 384217.805 9926323.223 Tondora Kilonzi Kimwele Ndatya
14 383473.495 9927602.109 Tondora Muthakye Muteti
15 382890.209 9926853.099 Katithini Peter Mutinda Muthengi
16 381305.399 9925882.234 Katithini Muthui Masyuko
17 381754.064 9924579.663 Katithini Mutuku Kitune
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APPENDIX B

DESCRIPTIVE STATISTICS

Table B.1: Descriptive statics of Melia Volkensii (Mukau), Azadirachta indica (Neem) and
Adansonia sp. (Baobab). The trees of Mukau and Neem are divided into diameter classes of
5 cm based on the diameter at breast height (DBH). Since only 3 Baobabs were measured,
these trees were divided into 2 classes.Per class the table contains the average value of
the crown diameter, the height, the tree age and the tree vitality. The last column shows
the percentage of trees per diameter compared to the total amount of that species.

DBH (cm) Crown
diameter (cm) Height (cm) Tree

age (year)
Tree

Vitality
Number of
trees (%)

Azadirachta indica
0.0 - 5.0 155.46 3.34 14.00 2.60 13.87
5.0 - 10.0 251.61 5.39 14.00 1.94 46.72
10.0 - 15.0 337.15 7.90 13.90 1.42 32.36
15.0 - 20.0 386.88 9.52 13.85 1.58 6.33
20.0 - 25.0 595.17 9.57 14.00 1.00 0.73

Acacia sp.
0.0 - 5.0 397.75 2.50 10.00 2.00 2.50
5.0 - 10.0 462.26 6.84 10.00 1.96 6.57
10.0 - 15.0 612.06 10.75 10.0 1.09 8.27
15.0 - 20.0 664.66 11.44 10.00 1.00 3.89
20.0 - 25.0 776.50 9.60 10.00 1.00 0.24

Adansonia sp.
0.0 - 50.0 280.00 4.00 30.00 1.00 66.67
350.0 - 400.0 2377.50 21.30 600.00 1.00 33.33
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APPENDIX C

TEMPLATE LIBRARY

The numbering of the empirical templates have the following meaning for the farms as well
as the plantation:

- T1 - T3: window size 9 with 3 subgroups.

- T4 - T6: window size 13 with 3 subgroups.

- T7 - T9: window size 15 with 3 subgroups.

- T10 - T12: window size 17 with 3 subgroups.

- T13 - T15: window size 21 with 3 subgroups.

- T16 - T18: window size 9 with 2 subgroups and one empty template.

- T19 - T21: window size 13 with 2 subgroups and one empty template.

- T22 - T24: window size 15 with 2 subgroups and one empty template.

- T25 - T27: window size 17 with 2 subgroups and one empty template.

- T28 - T30: window size 21 with 2 subgroups and one empty template.

- T31 - T33: window size 9 with no subgroups and two empty template.

- T34 - T36: window size 13 with no subgroups and two empty template.

- T37 - T39: window size 15 with no subgroups and two empty template.

- T40 - T42: window size 17 with no subgroups and two empty template.

- T43 - T45: window size 21 with no subgroups and two empty template.

A template was generated for each upper limit of the diameter classes in table 3.3 for
the farms. The other tree parameters needed for the template generation algorithm were
estimated using equations 4.1, 4.4 and 4.2, table 3.4.1 and a buffer value of 3. The template
numbers in the farms have the following diameter at breast height:

- T1: DBH = 5 cm

- T2: DBH = 10 cm

- T3: DBH = 15 cm

- T4: DBH = 20 cm
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C. Template library

- T5: DBH = 25 cm

- T6: DBH = 30 cm

- T7: empty template

- T8: empty template

- T9: empty template

A template was generated for each upper limit of the diameter classes in table 3.3 for
the plantation. The other tree parameters needed for the template generation algorithm
were estimated using equations 4.5, 4.3 and 4.6, table 3.4.1 and a buffer value of 0. The
template numbers in the plantation have the following diameter at breast height:

- T1: DBH = 5 cm

- T2: DBH = 10 cm

- T3: DBH = 15 cm

- T4: DBH = 20 cm

- T5: DBH = 25 cm

- T6: DBH = 30 cm

- T7: DBH = 30 cm

- T8: DBH = 30 cm

- T9: DBH = 30 cm

- T10: DBH = 30 cm

- T11: empty template

- T12: empty template

- T13: empty template

The resulting templates can be found in section C.1 and C.2.

C.1 Farms
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C. Template library

Figure C.1: Template library of the red band generated with eCognition®.
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C. Template library

Figure C.2: Template library of the green band generated with eCognition®.
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C. Template library

Figure C.3: Template library of the blue band generated with eCognition®.
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C. Template library

Figure C.4: Template library of the NIR band generated with eCognition®.
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C. Template library

Figure C.5: Template library of the brightness feature generated with eCognition®.
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C. Template library

Figure C.6: Template library of the red feature generated with with algorithm 3 in section
3.4.1.

Figure C.7: Template library of the green feature generated with with algorithm 3 in section
3.4.1.
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C. Template library

Figure C.8: Template library of the blue feature generated with with algorithm 3 in section
3.4.1.

Figure C.9: Template library of the NIR feature generated with with algorithm 3 in section
3.4.1.
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C. Template library

Figure C.10: Template library of the brightness feature generated with with algorithm 3 in
section 3.4.1.
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C. Template library

C.2 Plantation

Figure C.11: Template library of the red band generated with eCognition®.
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C. Template library

Figure C.12: Template library of the green band generated with eCognition®.
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C. Template library

Figure C.13: Template library of the blue band generated with eCognition®
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C. Template library

Figure C.14: Template library of the NIR band generated with eCognition®.
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C. Template library

Figure C.15: Template library of the brightness feature generated with eCognition®.

Figure C.16: Template library of the red feature generated with with algorithm 3 in section
3.4.1.
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C. Template library

Figure C.17: Template library of the green feature generated with with algorithm 3 in section
3.4.1.

Figure C.18: Template library of the blue feature generated with with algorithm 3 in section
3.4.1.
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C. Template library

Figure C.19: Template library of the NIR feature generated with with algorithm 3 in section
3.4.1.

Figure C.20: Template library of the brightness feature generated with with algorithm 3 in
section 3.4.1.
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