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ABSTRACT

Better Globe Forestry (BGF), a company active in East Africa, collaborates with local farmers
to plant Melia volkensii trees in their fields in an agroforestry layout. These plantations
appear to be highly successful as a result of which BGF is now in search of a monitoring tool
to remotely supervise their efforts of afforestation over extended areas. In this study, it is
researched if it is possible to differentiate Melia volkensii from its surroundings and other
tree species at the individual tree crown level in the region of Kiambere.

Very high resolution (VHR) satellite imagery has proven to be promising for classification of
tree species over broad spatial extents. Due to the high spectral variability associated with
VHR data and the promising results compared to pixel-based approaches, an object-based
approach was used. First, the image was segmented using the multiresolution segmenta-
tion algorithm after optimisation of the key parameters, namely image layer weights, shape
(versus colour) factor, and scale. Then, the candidate tree crowns (CTC) were masked out
from other land-cover classes using a rule-based classification, based on literature and
expert knowledge, followed by a Random Forest classification with recursive feature elimi-
nation. Finally, the resulting CTC mask was further classified into Melia volkensii and other
tree species with Random Forest. The classification results were not satisfactory (Cohen’s
Kappa coefficient of 0.118), whereby the obtained model is not suitable for large-scale
application without some major adjustments such as the use of a VHR satellite with strate-
gically located wavelength bands, the availability of ground truth data regarding the other
tree species class, or the integration of height information.






SAMENVATTING

Better Globe Forestry (BGF), een bedrijf dat actief is in Oost-Afrika, werkt samen met lokale
boeren om Melia volkensii in hun velden aan te planten in een agroforestry lay-out. Deze
aanplantingen blijken zeer succesvol te zijn. BGF is daardoor op zoek is naar een monitor-
ingtool om deze inspanningen voor bebossingen over uitgestrekte gebieden vanop afstand
op te volgen. In deze studie wordt de mogelijkheid onderzocht om Melia volkensii te onder-
scheiden van zijn omgeving en andere boomsoorten op het individuele boomkroonnniveau
in de regio van Kiambere.

Very high resolution (VHR) satellietbeelden hebben bewezen veelbelovend te zijn voor de
classificatie van boomsoorten in uitgestrekte gebieden. Vanwege de hoge spectrale vari-
abiliteit geassocieerd met VHR data en de veelbelovende resultaten in vergelijking met
pixel-gebaseerde benaderingen werd een object-gebaseerde benadering gebruikt. Eerst
werd het beeld gesegmenteerd met behulp van het multiresolution segmentation algo-
ritme, voorafgegaan door optimalisatie van de belangrijkste parameters, namelijk image
layer weights, shape (versus colour) factor en scale. Daarna werden potentiéle boomkronen
onderscheiden van andere bodembedekkingsklassen met behulp van classificatieregels,
gebaseerd op literatuur en vakkennis, gevolgd door een Random Forest classificatie met
recursive feature elimination. Ten slotte werden de potentiéle boomkronen verder geclassi-
ficeerd in Melia volkensii en andere boomsoorten met Random Forest. De classificatieresul-
taten waren ontoereikend (Cohen’s Kappa coéfficiént van 0,118) waardoor het verkregen
model niet geschikt is voor grootschalige toepassing zonder enkele grote aanpassingen
zoals het gebruik van een VHR-satelliet met strategisch geplaatste golflengtebanden, de
beschikbaarheid van velddata omtrent andere boomsoorten of de integratie van hoogte
informatie.






GLOSSSARY

3D three-dimensional
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1. INTRODUCTION

Better Globe Forestry (BGF) is a company active in Kenya since 2004 with a vision to eradi-
cate poverty and corruption in Africa. They finance a sustainable implementation by plant-
ing as many trees as there are people on this planet through ’Social Entrepreneurship’.
Its expertise lies in commercial afforestation of drylands, particularly with Melia volkensii
(locally known as mukau) in an agroforestry layout, to anticipate and mitigate effects of
climate change in East Africa. In 2009, they expanded their activities to Uganda (Better
Globe Forestryl, nd).

BGF has pioneered the use of mukau, an indigenous mahogany species, on an industrial
scale. Moreover, they introduced and popularised the planting of mukau in an authentic
and productive agroforestry layout for tens of thousands of farmers. The afforestation can
be divided into two categories. On the one hand classical tree plantations on leased land,
and on the other hand cooperation with local farmers in an agroforestry layout with wide
spacing to allow intercropping (Better Globe Forestry, nd). These plantations are widely
applied and appear to be very successful. Due to the extended area, BGF is now in search
of a sustainable monitoring tool to remotely supervise their efforts of afforestation.

In this explorative study, a prototype of the monitoring tool will be developed based on very
high resolution (VHR) satellite imagery. The development consists of two parts:

e counting of individual tree crowns,

e differentiating Melia volkensii from other tree species and its surroundings.

The first part will be explored in the Master’s Dissertation of Ellen Ghyselbrecht, whereas
the second part is the scope of this Master’s Dissertation. The final goal in the long-term
is to combine both studies and make an estimation of the total number of Melia volkensii
trees in each afforestation layout.

The main research question of this Master’s Dissertation is: Is it possible to differentiate
Melia volkensii accurately from (1) its surrounding, and (2) other tree species at the individ-
ual tree crown level in an agroforesty layout? Additionally, it is researched which combina-
tion of features (i.e. spectral, texture, or shape) enables the classification of Melia volkensii.
The method to differentiate Melia volkensii is automated as much as possible to make it re-
producible for other areas where BGF might be interested in. The objectives are likely to be
challenging due to some limitations mainly associated with the research set-up. The study
is based on Pléiades satellite imagery because of budgetary considerations although the
spectral and spatial resolution are known to be suboptimal for tree species classification.
Similarly, a single date classification is performed due to the high costs associated with
multiple acquisitions. There was also the intention to acquire aerial imagery with the aim



of obtaining more accurate localisation of the ground truth data and performing a prelimi-
nary study regarding the integration of height information. However, this was not possible
due to national policy. Therefore, the main goal of this study is to advice on the potential
use of VHR optical satellite imagery for the differentiation of Melia volkensii in an agro-
foresty layout in the region of Kiambere. Based on the results, some adjustments will be
recommended for optimisation of the methodology and a potential large-scale application.

In Chapter [2] of this Master’s Dissertation, a literature review of tree species classification
based on VHR imagery will be made. In Chapters[3]and [4] some of the discussed methods
will be applied and adjusted for Pléiades imagery in the region of Kiambere, followed by a
discussion of the results. Finally, some recommendations, based on the results and litera-
ture, (Chapter[5) for further development will be made that might improve the performance
of the classification.



2. TREE SPECIES CLASSIFICATION
BASED ON VHR SATELLITE IMAGERY

In 2007, the first commercial satellite with a spatial resolution of half a metre has been
launched, namely WorldView-1 (Blaschke, 2010). Since that moment, many other very
high resolution (VHR) satellites have followed (e.g. GeoEye-1, Pléiades, WorldView-2 and
-3). The accessibility of commercial VHR satellites increases the amount of information
on land cover at local to national scales, providing amazing details of the earth surface
(Frauman and Wolff, |2005). The spatial resolution of these images varies from some tens
of centimeters to 3 or 4 m resulting in both an increasing number of pixels and a lower
proportion of mixed pixels (i.e. pixels consisting of two or more classes (Hsieh et al.,[2001)).
Accordingly, it is very likely that neighbouring pixels belong to the same land cover class
as the pixel under consideration leading to within-class spectral variation, thus, one single
pixel is probably not representative for the spectral characteristics of an individual tree. In
addition, VHR images provide increased textural information regarding texture and shape
of ground features (Van Coillie et al., 2007} |Pu et al., [2018).

Pixel-based classification approaches focus only on spectral values of each pixel and each
pixel is dealt with in isolation from its neighbours. After applying classification algorithms,
neighbouring pixels are often assigned to different classes despite being similar. This results
in salt-and-pepper effects and therefore high classification errors (Kelly et al.,|2011)). Many
studies have suggested that object-based image analysis (OBIA) is superior to pixel-based
approaches because they reduce these salt-and-pepper effects, hence increase classifica-
tion accuracies (e.g. |Dragut et al.| (2010); Immitzer et al.| (2012); |Ng et al. (2017); |Pu et al.
(2018)).

2.1 Object-based image analysis (OBIA)

OBIA is an alternative analytical framework that can mitigate the deficiencies associated
with pixel-based approaches (Adam et al., |2016). According to Blaschke (2003), the core
concept of OBIA is that important information necessary to interpret an image is not rep-
resented in a single pixel, but in meaningful image objects and their mutual relationship.
It aims to delineate readily usable objects from imagery in order to use spectral and con-
textual information in an integrative way. The increased spectral information of objects
compared to single pixels is one of the main advantages of OBIA, while the additional spa-
tial information is probably of an even greater advantage (Blaschke}2010). This enables the
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extraction of spectral and textural features, not available for pixel-based approaches (Ng
et al.,[2017). Benz et al.| (2004) has mentioned three additional advantages (1) meaningful
statistics and texture calculation, (2) increased uncorrelated feature space using shape and
topological features and (3) close relation between real-world objects and image objects
which improves the value of the final classification. Nonetheless, the quality of the final
classification depends largely on the experimental objects used (Adam et al., [2016).

OBIA has become more popular in recent years due to the availability of commercial eCog-
nition® software, launched in 2000 by Definiens Imaging GmbH (Lewinski et al., 2010).
However, the idea of incorporating contextual information in classification can be tracked
back to the 1970s. In literature it is generally agreed upon that OBIA builds on older seg-
mentation, edge-detection, feature extraction and classification concepts used in remote
sensing image analysis for decades (Blaschke, 2010). The application of OBIA has extended
in various fields, especially forest mapping and land use land cover classification (Lewinski
et al., 2010). Recently there exists a multitude of implemented segmentation algorithms
for remote sensing tasks, but only some of them are commercially available (Meinel and
Neubert, |2004). An overview of available segmentation software has been provided by
Hossain and Chen| (2019).

During OBIA, a three-step object-oriented classification process is implemented. In the
first and most crucial step, a pixel-based image is divided into relatively homogeneous
image objects with regard to spatial and spectral characteristics. Consequently, within-
class spectral variation is reduced (Blaschke, [2010; Dragut et al., |2010) (Section [2.1.1).
After segmentation, image objects are characterised using various features followed by
extraction of the most significant features for optimal class separation (Nussbaum et al.,
2006} Van Coillie et al., [2007) (Section [2.1.2). During the final step, image objects are
assigned to classes by a classification algorithm or based on expert knowledge (Nussbaum
and Menz, [2008) (Section[2.1.3).

2.1.1 Image segmentation

Pal and Pal| (1993) has defined image segmentation as the process of partitioning an image
into non-intersecting regions (i.e. image objects) such that each region is homogeneous and
the union of no two adjacent regions is homogeneous. It has been suggested in literature
that image analysis leads to meaningful objects only when the image is segmented into 'ho-
mogeneous’ regions or 'relatively homogeneous’ regions, of which the latter term reflects
better the near-decomposability of natural systems. The key is that the internal heterogene-
ity of each image object is lower than the heterogeneity compared with its neighbouring
image objects (Blaschke et al., [2004). Thus, segmentation has two desirable properties:
(1) each of the resulting image objects should be internally homogeneous, and (2) should
be distinguishable from its neighbours (Espindola et al., |2006). Segmentation can be ap-
proached as an optimisation process during which image objects of minimum heterogeneity
given certain criteria have to be found (Benz et al., 2004). These criteria include colour (i.e.
spectral values of the pixels forming the object) and shape (i.e. the result of texture) of an
image object (Munyati, 2018). The resulting image objects are the basic processing units
of OBIA, holding more real-world values than pixels alone, and may be considered as object
primitives. These object primitives do not necessarily have any meaning, but they should
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maintain some important properties, such as low spectral variance, similar sizes for the dif-
ferent objects included in the same land cover, and absence of under-segmentation. Object
primitives are usually a crucial step before objects of interest, matching real-world objects,
can be found by further processing (Benz et al., 2004} Frauman and Wolff, |2005} Blaschke,
2010} Dragut et al., [2010; |Canovas-Garcia and Alonso-Sarrial, [2015). The process of en-
dowing the object primitives with meaning is a complex one and usually takes place in the
classification step (Dragut et al., |2014)). In fact, image segmentation is a pre-classification
step creating more compact and fewer object primitives (Blaschke et al., |2004).

Segmentation of an image into objects is a problem with a huge number of possible solu-
tions. Segmentation algorithms often respond sensitively to insignificant variations such as
slight parameter changes, the order of segmentation hierarchical approaches, or the im-
age data itself. Thus, users are confronted with high degrees of freedom which should be
minimised to satisfy the given requirements (Blaschke| 2003; |Meinel and Neubert, 2004).
Furthermore, segmentation needs to address a certain scale (Blaschke, [2003)), which con-
trols the average size of image objects (Kim et al., 2008). The average size of image
objects critically impacts classification accuracy (Dragut et al., 2014). Therefore, segmen-
tation can increase classification and statistical accuracy when conducted at an appropriate
scale (Dragut et al., [2010). The importance of an optimal scale is different between fea-
ture extraction and wall-to-wall classification. For feature extraction, the optimal scale is
not as important as for classification, as it is often sufficient to obtain a preliminary ap-
proximation of the scale parameter (Dragut et al., 2010). The optimal scale depends on
the targeted ground features during analysis and occurs at the value where the objects of
interest are not over- or under-segmented. In an over-segmented image, adjacent objects
are on average somewhat similar, while in an under-segmented image, the objects are too
large and therefore tend to lose their spectral homogeneity (Kim et al., [2008). Since land-
scapes typically consist of different types of land cover that vary in size (e.g. trees, roads,
buildings), and meaningful structures appear at different scales (e.g. stand level at coarser
scales, and individual trees at finer scales), single-scale segmentation methods may not be
able to properly segment all objects of interest without the occurrence of over- or under-
segmentation. This is why using a multi-scale approach often may be preferable. However,
the use of multiple segmentation scales is typically based on extensive knowledge of the
area under investigation (Trias-Sanz et al., 2008; [Johnson and Xie| [2011))). Therefore, the se-
lection of accurate scale parameters is a crucial decision during segmentation of an image
(Dragut et al., 2014). Unfortunately, there is no recognisable relationship between the scale
parameter, which is unitless, and spatial measures, such as area, specific for image objects
composing a scene (Hay et al., [2005). This makes it very challenging to define appropriate
segmentation parameters to generate objects that satisfy user requirements without per-
forming subjective trial-and-error experimentation, leading to serious limitations for some
users (Hay et al., 2005 Dragut et al., [2010). Hence, the integration of instruments for
the evaluation of segmentation quality appears desirable (Meinel and Neubert, |2004). As-
sessing the quality of segmentation is difficult because currently no standard evaluation
methods exist (Dragut et al.,|2014). Segmentation results can be evaluated visually, based
on expert knowledge, because the human eye is acknowledged as a strong and experienced
source for the evaluation of segmentation algorithms. Additionally, quantitative accuracy
assessment of the segmentation results can be performed during the classification step
(Benz et al., [2004; |Dragut et al., |2010).



Many segmentation techniques have been developed in the last decades. From an algo-
rithmic perspective, |Pal and Pal (1993) has grouped these techniques into four categories
(Van Coillie et al., 2007} Blaschke} 2010):

1. Point-based: separates pixels of an image into different objects by thresholding (e.g.
grey-level thresholding) (Tian and Chen, 2007).

2. Edge-based: identifies edges and closes them by using contouring algorithms. It as-
sumes that between edges, the pixel properties change abruptly (e.g. edge detection)
(Hossain and Chen, |2019).

3. Region-based: detects regions that meet certain homogeneity criteria (e.g. split and
merge) (Tian and Chen, |2007).

4. Combined.

A review of segmentation techniques has been provided by Haralick and Shapiro| (1985)),
Pal and Pal| (1993), and more recently by |[Hossain and Chen| (2019). They all address salt-
and-pepper effects, even though many suffer from major drawbacks such as over- and
under- segmentation or not being useful at all scales (Frauman and Wolff, [2005). This is
why only a few of the existing segmentation techniques are widely available in commer-
cial software packages and lead to qualitatively convincing results while being robust and
operational (Blaschke, [2003). For instance, eCognition® Developer version 10.2 contains
11 segmentation algorithms. In the [User Guide eCognition® Developer| (2019), segmenta-
tion is defined as any operation that creates new image objects or alters the morphology
of existing image objects according to specific criteria. The segmentation algorithms are
classified according to two basic principles, namely a top-down or a bottom-up strategy.
During the former, large objects are cut into smaller pieces, and during the latter, small
pieces are merged to obtain larger objects. Table [2.1] gives an overview of the segmenta-
tion algorithms implemented in eCognition® Developer version 10.2.
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Table 2.1: Segmentation algorithms implemented in eCognition® Developer version 10.2
(User Guide eCognition® Developer, 2019).

Segmentation algorithm Description

Top-down

Chessboard Cuts the image into equal squares of a given size.

Contrast filter Uses pixel filters to detect potential image objects by
contrast and gradient and creates suitable object
primitives.

Contrast split Segments an image into dark and bright image objects
based on a threshold value that maximises the contrast
between them.

Multi-threshold Splits the image into image objects based on user-defined
pixel threshold values.

Quadtree based Creates squared image objects with different sizes.

Standard deviation split Applies a contrast split algorithm based on conditions
using the standard deviation of an input layer.

Vector-based Creates or converts an image object level to reflect the
content of a vector layer.

Bottom-up

Multiresolution Consecutively merges pixels or existing image objects,
based on relative homogeneity criteria.

Spectral difference Merges neighbouring image objects if the difference
between their layer mean intensities is below the value
given by the maximum spectral difference.

Superpixel Starts from a grid of superpixels and then refines the
boundaries by proposing updates of edges boundaries
in iterations.

Watershed Grows image objects from a seed (local intensity minima)
until they touch image objects growing from neighboring
seeds.

Multiresolution segmentation

Concept

Multiresolution segmentation, introduced by |Baatz and Schape| (2000), is one of the most
widely used and successful image segmentation algorithms and has been shown to pro-
duce image objects that closely resemble field reality (Munyati, 2018). It is a bottom-up
region-merging technique, embedded in eCognition® Developer, starting with one-pixel
objects, which are iteratively merged with their neighbours into larger objects. The process
continues until a homogeneity threshold, defined by the scale parameter, of the image
object is exceeded (Hay et al., 2005} Dragut et al., 2010; Wang et al., [2018). This homo-
geneity threshold is a combination of colour and shape, weighted by the user. The higher
the shape factor is weighted, the lower the influence of colour in the segmentation, and
vice versa. For the shape factor, it is also necessary to define compactness and smooth-
ness values, which are inversely related to each other. Compactness targets objects with
well-defined edges, while smoothness defines objects that have more transitional edges.
The scale parameter is the most important determining parameter. It is the maximum
standard deviation of the homogeneity threshold, regarding the weighted image layers, for
the resulting image objects. A higher scale parameter leads to larger and less homoge-
neous image objects by decreasing the homogeneity threshold per object (Dragut et al.,
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2010 /Adam et al., 2016} Munyati, 2018). In summary, the multiresolution segmentation
algorithm requires the specification of four key parameters prior to segmentation, namely
shape (versus colour), compactness (versus smoothness), image layer weights and scale,
which are often set using trial-and-error experimentation (Munyati, [2018]).

After running the multiresolution segmentation algorithm, the resulting image objects do
not yet correspond to real elements in the landscape and are called object primitives. These
object primitives are often smaller than manually digitised objects. Hence, there is a need
for other fusion algorithms to merge these object primitives into a set of larger objects
that are more related to landscape elements. One of the most frequently used fusion
algorithms in eCognition® Developer is the spectral difference segmentation algorithm,
which refines the segmentation results. This algorithm improves the spatial correspondence
between object primitives and the real-world landscape objects by favouring the generation
of large, homogeneous objects to prevent over-segmentation, and thereby reducing the
total number of objects (Canovas-Garcia and Alonso-Sarria), [2015).

Parameter optimisation

Pre-segmentation image analysis methods for reducing subjectivity during the above de-
scribed procedure have been proposed in literature (e.g. Kim et al.| (2008)); Dragut et al.
(2010); Dragut et al.[(2014); [Munyati[(2018)). The drawback is that most of these methods
require stand-alone software modules, making it difficult to integrate them into existing
image segmentation software packages (Munyati, 2018)). Many of the methods use image
texture operators based on variance for the optimisation of the multiresolution segmen-
tation algorithm (Munyati, [2018). |Woodcock and Strahler (1987)) has used average local
variance graphs for understanding how the spatial structure of an image changes with the
pixel size. They have calculated average local variance by computing the standard de-
viation of the spectral reflectance or brightness values in a 3 x 3 kernel, subsequently,
the average for the entire scene has been graphed as a function of the associated pixel
size. This value is an indicator of the local variability in the image. The application of
the concept of local variance exploits spatial autocorrelation, which is an inherent feature
of remote sensing data and a reliable indicator of statistical separability between spatial
objects (Espindola et al., 2006} Kim et al., [2008; |Dragut et al., |2010). Kim et al.| (2008)
has introduced the concept of local variance to OBIA by exploring the relationship between
image object variance and spatial autocorrelation at different scale parameters to define
the optimal scale for forest stand segmentation (Dragut et al., [2010; Dragut et al., [2014).
Image object variance represents the internal homogeneity of the image objects, whereas
spatial autocorrelation is a measure of the external heterogeneity between image objects.
According to |[Canovas-Garcia and Alonso-Sarrial (2015) neither of them is able to identify
the optimal segmentation scale without the other. [Kim et al.|(2008) has conducted a series
of segmentations with altering scale parameters to estimate the optimal object size. For
each segmentation, average local variance and spatial autocorrelation of the image objects
have been calculated and graphed as a function of the associated scale parameter. Addi-
tionally, the repeatability of the segmentation process has been assessed. After repeating
the process five times, there has been no observable difference in the number or average
size of the image objects, as well as the calculation of local variance and spatial autocorre-
lation. They have concluded that the optimal segmentation occurs at the scale just before
flattening of the average local variance curve, and at the scale associated with the lowest,
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and even negative, autocorrelation between image objects (Kim et al., 2008). This method
has focused on one optimal scale, which is appropriate for simple scene models (Dragut
et al.|, |2010). Even though, the analyses have not agreed on the exact same optimal seg-
mentation scale, they have narrowed the wide range of possible scales. Users often do
not know the initial order of magnitude to begin for determining the segmentation scale.
First, they can perform a rough cut of segmentation at a few scales between a wide range
by graphing local variance and spatial autocorrelation. Afterwards, researchers can target
specific scales, which are most likely associated with the optimal image object sizes, and
avoid wasting time for segmentation at non-optimal scales (Kim et al., |2008).

Building on the results of Kim et al. (2008), [Dragut et al.| (2010) has used the concept
of local variance, proposed by |Woodcock and Strahler| (1987), to develop the 'Estimate
Scale Parameter’ (ESP) tool. They have extended this concept into multiscale analysis
since many environmental problems cannot be handled at a single scale of observation.
Multiscale analysis requires more than one suitable scale parameter to account for differ-
ent levels of organisation in a landscape structure (e.g. forest, stand level, tree level) or to
include different categories of objects with different sizes in complex scenes. The ESP-tool,
implemented in the eCognition® Developer environment, automatically generates image
objects at multiple scale levels in an iterative way and calculates the local variance of each
scale as the mean of the standard deviation of the image objects obtained through seg-
mentation (Dragut et al., 2010). Dragut et al. (2010) has established that object variance
increases with object scale (Munyati, [2018), and thus local variance alone is not suitable
for a multiscale approach to determine at which scale meaningful objects emerge. There-
fore, the rate of change of local variance (ROC-LV) has been introduced as a measure of
the dynamics of local variance across scales. The graph of ROC-LV enables the detection of
multiple scale parameters. Peaks in the ROC-LV graph indicate the scale levels at which the
image can be segmented in the most appropriate manner, relative to the data properties
at the scene level. The tool can be used for the analysis of a single layer of image data
or other continuous data (e.g. digital surface models). The application on a single layer
makes it independent of specific sensors or parameterisation issues (Dragut et al., 2010).
In order to take full advantage of multispectral information, segmentation on multiple lay-
ers is desirable (Dragut et al.,|2014). Dragut et al.| (2014)) has introduced a fully automated
methodology for the selection of suitable scale parameters, considering multiple layers, and
using a local variance based algorithm (Dragut et al., 2014, |Munyati, [2018)). This approach
is basically an automation of the ESP-tool, by implementing a three-level hierarchy concept,
where the production of a graph has been replaced by an iterative procedure that segments
an image at the first thresholds that occur in the local variance graph. The average local
variance of the objects in each image layer is calculated and serves as a condition for stop-
ping the iterations (Dragut et al.,[2014). The optimal scale is found when the average local
variance of the objects in all layers is equal to or lower than the previous segmentation
iteration (Munyatij, 2018). Subsequently, objects segmented in the previous scale level are
retained. All of the calculated local variance values are recorded in a table that can be
exported and processed with freely available stand-alone software. Consequently, a user
can assess the scales that are detected by the automated ESP-tool or can simply choose
other representative scales, based on the resulting graph, according to the specific goal of
their project. Adapting the procedure to perform multi-layer segmentation has resulted in
the challenge of specifying the number of layers considered in the segmentation, as well as



in the calculation of the average local variance values. To address this issue, an index has
been implemented that counts the total number of layers added to eCognition® Developer
and considers them all in processing. This makes the tool independent of a specific sensor
and allows the integration of multiple data sets (e.g. ancillary data). The tool has a signifi-
cant potential of increasing the objectivity and automation in OBIA applications. However,
the tool produces statistically significant segmentations, which do not necessarily belong
to a semantically relevant category of objects (Dragut et al., |2014). Considering this limi-
tation, [Dragut et al.[| (2014) has not expected successful automation in any possible case,
especially when targeting semantically complex categories of image objects. Nonetheless,
making at least first approximations of scales that exist within the data are possible (Dragut
et al., [2014).

All of the above mentioned methods focus only on defining the optimal scale parame-
ter. However, multiresolution segmentation requires the specification of three additional
parameters, namely image layer weights, shape (versus colour), and compactness (ver-
sus smoothness). [Munyatil (2018) has proposed a method to determine the image layer
weights, as well as a method to determine the shape (versus colour) factor for mapping
vegetation communities in South Africa. Principal component analysis (PCA) of the image
data has been performed in order to determine band (i.e. image layer) weight values (Mun-
yati, 2018). PCA is a technique allowing to identify the bands that contain most of the
information present in the image data by indicating whether or not there is hierarchy in the
band data variance. Indication of the band hierarchy can be obtained through the dimen-
sionality shown by the data variance in the principal components (Lillesand et al., |2015;
Munyati, |2018). For the specification of the shape (versus colour) factor, Munyati (2018]
has used texture images of each band generated by a variance texture enhancement oper-
ator (Equation[2.1) using 3 x 3 kernels.
. Z(xij — M)?
variagnce = ——— (2.1)
n—1

where xj; is the reflectance value of pixel ij, M is the kernel mean reflectance, and n is
the number of pixels in the kernel. The smallest kernel size has been preferred in order
to preserve the spatial detail of the vegetation cover, which would have been lost with
larger kernel sizes. Variance enhances texture because it increases when the pixel grey-
level values differ from their mean in the kernel. Afterwards, the texture images have
been stacked into one texture colour composite image. For both the untransformed and
the texture colour composite image, descriptive statistics, such as mean and coefficient
of variation (CV), of the reflectance data of vegetation communities have been calculated.
Finally, the images have been compared using the CV of the reflectance data, and the
shape (versus colour) factor has been determined based on the ratio of the range in mean
values of both images (Munyati, [2018).

2.1.2 Image feature analysis
Determining a suitable classification feature space is a crucial step before image classi-
fication. Object features are created for each image object in order to improve object

separability, ensuring that classes are discriminated effectively and with sufficiently high
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2. Tree species classification based on VHR satellite imagery

accuracy (Mishra and Crews, [2014; Adam et al., |2016). Many object features have been
proposed in literature:

e Image object statistics: within an image object, all kinds of statistics based on a single
spectral band or combinations of spectral bands can be computed (Benz et al., [2004)
such as band means, standard deviations, brightness, maximum difference, and ratios
(Van Coillie et al., 2007} [Mishra and Crews|, 2014).

e Image object texture: texture is the tonal variation in an image and may be a good
proxy for vegetation structure, since these variations arise from canopy biophysical
properties such as architecture of the crowns, as well as their arrangement of leaves
and branches (Thierion et al., |2014; [Ferreira et al., |2019). Various texture measures
exist, but they are typically derived using a moving window or kernel method of a
fixed size, shape and (limited) orientation(s), the most common being co-occurrence
matrices of the image grey-levels (Van Coillie et al., [2007; Blaschke et al.,[2014). First
and second order texture measures derived from the grey-level co-occurrence ma-
trix (GLCM) after Haralick et al. (1973) as well as the grey-level difference vector
(GLDV), including homogeneity, contrast, dissimilarity, entropy, angular second mo-
ment, mean, standard deviation, and correlation can be calculated (Van Coillie et al.}
2007).

e Image object shape: shape refers to the general form or outline of individual image ob-
jects (Blaschke et al., |2014)). The closer the object primitives are to real-world objects,
the more object features such as shape index, size, length, and number of edges can
be used as uncorrelated object features (Benz et al., 2004} Van Coillie et al., [2007).

e Topological object features: these features describe the spatial context of the image
objects. In eCognition® Developer image objects on different scales form a hierarchi-
cal network where each object knows its intrinsic relation to its super-object (is within)
and its sub-objects (are contained), as well as relations to neighbouring objects at the
same scale (Blaschkel, [2003). This object network provides additional object features:
(1) characterisation of an image object based on its sub-objects using texture analysis,
line analysis, or class-related features; (2) characterisation of an image object based
on its super-object (Benz et al., [2004).

e Semantic features: these higher order features are available after a first classification
of image objects. Semantic features reduce ambiguities, allow landuse classification
in addition to pure landcover classification and thus lead to a first step of scene under-
standing (Benz et al., |2004). These features require the knowledge of the expert on
the landscape in question (Blaschke, |2003).

The above described features fall into two groups (Lillesand et al., |2015). The first group
contains image object statistics, texture, and shape. They can be regarded as intrinsic
features, since they are available for each image object (Benz et al., [2004). The second
group, containing topological and semantic features, describes the relationship among ob-
jects (Lillesand et al., [2015).

According to [Lillesand et al.| (2015) image characteristics such as texture, shape, and pat-
tern are the most important features in the visual interpretation of remotely sensed im-
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agery. Image texture has been recognised as an important source of information when in-
terpreting forest vegetation (Van Coillie et al.,|2007; |[Mallinis et al.,|2008). The improvement
of classification accuracy by adding textural features has been demonstrated by numerous
authors (Thierion et al., |2014)). For instance, [Mishra and Crews| (2014)) has determined that
next to spectral features, object-level texture features are also important for distinguishing
savanna vegetation morphology types, because vegetation morphology types in semi-arid
systems are often marked by a subtle difference in vegetation physiognomy. On top of this,
species composition has relatively similar spectral characteristics. Yet, it remains difficult
to successfully automate the recognition of objects solely based on textural features. Using
them in combination with spectral characteristics might be advantageous (Van Coillie et al.}
2007).

The availability of hundreds of features leads to a high-dimensional predictor feature space.
Therefore, classification algorithms might overfit, especially when they face a sparse num-
ber of training samples compared to the number of predictors. Although, the gravity of this
problem depends partly on the algorithm used (Van Coillie et al., 2007 [Fassnacht et al.,
2016)). To overcome this issue, it might be beneficial to reduce the input dimensionality
by an appropriate selection of features for class description. This might even lead to an
increase in classification accuracy (Van Coillie et al., 2007 Adam et al., [2016). The se-
lection of features can be based on past experience and user knowledge, or it can use
feature reduction algorithms (Adam et al., |2016; Wang et al., |2018). Feature reduction al-
gorithms can be subdivided into feature extraction (e.g. PCA) and feature selection (e.q.
manual band selection, Random Forest) algorithms. Feature extraction algorithms calculate
new predictor variables that typically summarise the content of several original predictors,
while feature selection algorithms select a subset of the original predictor variables. In
many cases, feature selection algorithms are less efficient than feature extraction algo-
rithms. Nevertheless, they have the advantage of enabling a meaningful interpretation of
the remaining feature space and thereby increase the understanding of what exactly drives
the discrimination of, for example, tree species, which is often not the case for the newly
composed feature space in a feature extraction approach (Fassnacht et al., [2016).

2.1.3 Tree species classification

The classification step assigns image objects to semantic classes (i.e. high-level concepts
such as vegetation) (Arvor et al. [2013). Objects can be assigned to these classes by
a classifier or based on expert knowledge (Nussbaum and Menz, 2008). For classifying
tree species this is usually done in a supervised way, having some field data and relating
them to the information provided by remote sensing data. These data are usually spectral
data, as different tree species are characterised by different spectral signatures (Dalponte
et al., 2019). Nonetheless, the spectral signature of tree crowns across species often have
high spectral similarity as well as significant intra-species variability, making tree species
classification a challenging task (Zou et al., [2019).

Supervised machine learning algorithms are well suited for species classification of individ-
ual tree crowns (Sumsion et al., 2019). In general, supervised machine learning algorithms
can be divided into two steps, namely training and testing. During the training step, a set
of training data and the associated output labels are used to learn a mapping from the
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input training data to the desired output labels. This mapping is then used to predict the
species classes for unseen, unlabeled test data during the testing step (Zou et al., 2019).
Fassnacht et al.| (2016) has provided an overview of the most frequently applied classifi-
cation algorithms and some of their advantages and disadvantages. They have divided
these algorithms into two categories: (1) parametric approaches, and (2) non-parametric
approaches. Some studies using mixed sets of input features (e.g. spectral, texture, shape)
have preferred the use of non-parametric machine learning algorithms like Random Forest
or Support Vector Machine (Fassnacht et al., [2016)).

Random Forest

Random Forest is a non-parametric ensemble (i.e forest) learning algorithm. During the
training stage, several decision trees are constructed using a random sample with replace-
ment (i.e. bootstrapped sample) of the reference data set (Immitzer et al., 2012} [Karlson
et al., 2016)). Roughly two thirds of the data are sampled with replacement, while one third
are withheld from the tree construction (i.e. out-of-the-bag (OOB) samples) (Mishra and
Crews|, 2014). Additionally, the algorithm searches at each tree node across a randomly
selected subset of predictor features for establishing binary splits. The split determina-
tion is based on the Gini index of node impurity. The best-splitting feature is identified
by maximising the index, and therefore the classification accuracy (Gislason et al., 2006}
Immitzer et al., 2012} Karlson et al., [2016). Trees are split in a manner that reduces the
uncertainty present in the data and hence the probability of misclassification. The ideal
splitting feature, or a Gini value of zero, occurs when only one class is represented at each
terminal node (Watts and Lawrence, |2008). The number of features included in the subset
is a user-defined parameter, but the algorithm is not sensitive to it. The value is often set
to the square root of the total number of predictors (Gislason et al., |2006; [Karlson et al.|
2016). In summary, two parameters have to be set to run the classifier: (1) the number
of decision trees for executing the classification (i.e. number of bootstrap iterations), and
(2) the number of input features used at each tree node (Immitzer et al., |2012; |Pu et al.,
2018)). Due to the dual randomisation, the correlation between decision trees is decreased
and the overall computational complexity of the algorithm is reduced (Mishra and Crews,
2014)). For classification, each tree in the Random Forest casts a unit vote for the most
popular class. The final output of the classifier is determined by a majority vote of all trees.
The trees in Random Forest are not pruned. Pruning is not needed as each classification is
produced by a final forest that consists of independently generated trees created though a
random subset of the data, further reducing the computational load (Gislason et al., 2006
Watts and Lawrence, |2008).

The algorithm has an internal accuracy measure, making it unnecessary to partition the
reference data into training and test data. The accuracy of the reference data set is es-
timated by running the OOB samples (i.e. the remaining reference set samples that are
not in the bootstrap for a particular tree) of each tree down through the tree as a form of
cross-validation. The results are combined with a majority vote and then compared with
the true class label giving an estimation of the misclassification error. Since each tree can
only use the reference samples that were OOB to estimate the accuracy, the classification
error estimation is lower than the estimation made by an independent test set (Gislason
et al.|, [2006; |Watts and Lawrence, [2008; Immitzer et al., 2012)). [Fassnacht et al.| (2016) has

13



recommended the application of an iterative data-splitting approach in combination with a
completely independent test set as a gold standard for tree species classification studies.
Random Forest calculates estimates of feature importance as Mean Decreasing Accuracy
(MDA). MDA is automatically generated within Random Forest by calculating the decrease
in classification accuracy that results from randomly permuting the predictors in the OOB
samples (Karlson et al., [2016; Ng et al.| [2017). If the outcome is unaffected, the predictor
has low feature importance, whereas an increased classification error is an indication of
the importance of the feature (Gislason et al., |2006} |Smith|, [2010). The MDA values can be
used for feature ranking and feature selection. By performing feature selection the model is
optimised leading to an improved classification accuracy as well as preventing overfitting
of the model (Karlson et al., [2016; [Ng et al., |2017). |[Karlson et al.| (2016) has proposed
a backward feature elimination procedure to identify the most efficient and parsimonious
classification model. The procedure starts by building the Random Forest model using the
full predictor data set. The lowest-ranked predictors are then removed successively until
the mean square error of the model, calculated from the OOB samples, is minimised (Karl-
son et al., 2016). Feature selection makes it possible to add a large number of features
because they are screened for their respective discriminative power (Ng et al., [2017).

Random Forest is often selected over conventional parametric classifiers and other ma-
chine learning algorithms since it possesses several properties that are favourable for re-
mote sensing-based tree species classification (Karlson et al., |2016)). First of all, Random
Forest makes no assumptions about the data distribution. In tree species classification the
robustness against non-normally distributed data sets can be helpful, for example, if only
the most relevant tree species are mapped individually while pooling the secondary tree
species in a single class (Immitzer et al., [2012). Additionally, the algorithm is effective in
separating spectrally similar classes (e.g. tree species) characterised by high intra-class
variability since it does not require that classes have a common covariance matrix, which is
often not the case in tree species classification (Immitzer et al., |2012;} Karlson et al., [2016;
Pu et al., 2018). Moreover, it is an easily implemented technique because of the small
number of parameters that needs to be adjusted, and the low tendency to overfit the data
due to the self-validation mechanism (Karlson et al., 2016} |Pu et al., [2018). The measure
of feature importance is also recognised as one of the main advantages of Random Forest
since it has been demonstrated highly useful for identifying the most effective features for
developing simplified classification models (Karlson et al., |2016; |Pu et al., |2018).

2.2 Image data

According to [Fassnacht et al.| (2016)), spatially explicit information of tree species plays an
important role in a wide variety of applications in forestry, regardless of the forest or veg-
etation type. The only way to obtain this information over an extended area is by remote
sensing (Ferreira et al. 2019). A review of studies on tree species classification from re-
motely sensed data has been provided by [Fassnacht et al.| (2016). Various types of active
and passive sensors have been employed so far and the highest classification accuracies
have been obtained using airborne hyperspectral data or combining hyperspectral with light
detection and ranging (LiDAR) data. Nonetheless, hyperspectral and LiDAR sensors involve
high costs and therefore motivate the use of more affordable remote sensing data such
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2. Tree species classification based on VHR satellite imagery

as these obtained by spaceborne platforms (Ferreira et al., |2019), however, satellite-based
tree species classification has previously been limited by the spectral and spatial resolu-
tion of the available sensor systems (Karlson et al., 2016). The launch of VHR spaceborne
platforms has proven to be a promising technology for mapping tree species over broad
spatial extents. These satellites acquire images featuring metric and sub-metric resolu-
tions (Ferreira et al., 2019), hence providing sufficient spatial detail to achieve an accurate
classification at the species level (Deur et al., [2021). The latest generation of VHR sensor
systems (e.g. WorldView-3) has approached the level of hyperspectral systems by acquir-
ing spectral data in strategically located and relatively narrow wavelength bands with high
relevance for tree species classification (Karlson et al., 2016), but they are still limited by a
small swath area, large data volumes, low temporal frequency, and high data costs (Mishra
and Crews|, 2014)). In general, the higher the spatial, spectral and/or temporal resolution,
the higher the data costs. For example, Pléiades has a moderate spatial resolution, low
spectral resolution, and high temporal resolution, resulting in a data cost ranging between
1.40 and 1.80 EUR/km? with a minimum of 100 km?2, without VAT and processing costs.
However, these prices are exclusive for the so called CAT-1 user community (i.e. authorised
users of countries that partially funded the Pléiades programme), and are much lower than
the prices for commercial use. The prices are also much lower compared to other commer-
cial VHR satellite imagery. An overview of VHR satellites launched after 2007 is given in

Table[2.2l

Most of these satellites collect data in both a panchromatic band with high spatial res-
olution and in several multispectral bands with low spatial resolution, so there exists a
trade-off between spatial and spectral resolution. For obtaining improved spatially explicit
information, the spatial resolution of the multispectral bands can be upgraded by incorpo-
rating information from the panchromatic band (lbarrola-Ulzurrun et al., 2017} [Deur et al.,
2021). The process of generating synthetic high-resolution multispectral imagery by com-
bining panchromatic and multispectral information while maintaining spatial and spectral
fidelity is a special type of image fusion known as pansharpening or resolution merge.
The process can be interpreted in two ways: (1) it increases the spectral resolution of the
panchromatic image while enhancing interpretability, and (2) it enhances spatial resolution
of the multispectral images while preserving spectral fidelity (Ghosh and Joshil, [2013). Re-
sulting from this, pan-sharpened multispectral imagery with an effective spatial resolution
of the panchromatic band is obtained (Lillesand et al., |2015). Several studies have anal-
ysed the influence of image fusion on tree species classification and indicated an increased
classification accuracy when using the fused imagery (Pu et al., 2018} Deur et al., [2021).
Even though tree species classification based on VHR satellite imagery seems to achieve
promising results, several studies have researched the influence of the use of additional
data (e.g. multi-seasonal imagery or height information such as a canopy height model or
digital surface models) on the classification accuracy (Deur et al., |2021).
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Table 2.2: Overview of very high resolution (VHR) satellites launched after 2007. For each satellite the spatial resolution or ground sampling
distance (GSD) (m), number of spectral bands (i.e. spectral resolution) in the visible near infrared (VNIR) (coastal blue (CB), blue (B), green
(G), yellow (Y), red (R), red edge (RE), and near infrared (NIR)), shortwave infrared (SWIR), and clouds, aerosols, vapours, ice & snow (CAVIS)
spectral range, and the revisit time (i.e. temporal resolution) are listed.

Satellite Spatial resolution (m) Spectral resolution Temporal resolution Source

Cartosat-3 PAN: 0.28 Indian Space Research Organisation|(nd)
VNIR: 1.12 B, G, R, NIR

GeoEye-1 PAN: 0.41 3 days European Space Agency|(nd)
VNIR: 1.64 B, R, G, NIR

Pléiades 1A & 1B PAN: 0.50 daily Satellite Imaging Corporation|(nd)
VNIR: 2.00 B, R, G, NIR

SkySat-1 & 2 PAN: 0.86 4 - 5 days European Space Agency|(nd)
VNIR: 1.00 B, G, R, NIR constellation sub-daily

SkySat 3 to 15 PAN: 0.65 4 -5 days European Space Agency|(nd)
VNIR: 0.81 B, G, R, NIR constellation sub-daily

SkySat 16 to 21 PAN: 0.57 4 - 5 days European Space Agency|(nd)
VNIR: 0.75 B, G, R, NIR constellation sub-daily

SuperView-1 PAN: 0.50 2 days Satellite Imaging Corporation|(nd)
VNIR: 2.00 B, G, R, NIR

WorldView-1 PAN: 0.50 1.7 - 5.9 days European Space Agency|(nd)

WorldView-2 PAN: 0.46 up to 1.1 days European Space Agency|(nd)
VNIR: 1.80 CB, B, G, Y, R, RE, NIR, NIR2

WorldView-3 PAN: 0.31 1- 4.5 days European Space Agency|(nd)
VNIR: 1.24 CB, B, G, Y, R, RE, NIR, NIR2
SWIR: 3.70 8 bands
CAVIS: 30 12 bands
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2.2.1 Multi-seasonal imagery

A critical issue for tree species classification based on remote sensing is to determine when
image data should be acquired during the year for optimising the classification accuracy.
Knowledge about when the spectral signature of the tree species is most distinct, and thus
when the potential for accurate tree species identification is the greatest, can help plan
the image acquisition (Karlson et al., 2016). According to Madonsela et al.| (2017), tree
species classification can be enhanced by using time-series covering different periods dur-
ing the phenological cycle (i.e. seasonal variation in plant characteristics such as changes
in the colour of the leaves due to senescence or flowering, and fruiting events (Ferreira
et al., 2019)). Changes in phenology occur throughout the growing season at different
rates amongst species. Data that capture these changes may amplify the spectral variabil-
ity between deciduous species in relation with intra-species variability (Madonsela et al.,
2017). Hence, selecting an ideal period in which target species show peculiar character-
istics (e.g. flowers or senescent leaves), can potentially favour their detection (Ferreira
et al.,|2019). In other words, it is desirable to align the time of image acquisition with the
phenological cycle. A combination of two images, one during spring time (green-up) and
one during autumn (senescence), supports high classification accuracies, but it is recom-
mended to avoid late fall imagery after most leaves have fallen. The influence from the
background will increase during this period, leading to a more problematic separation of
deciduous species. Furthermore, it has to be noted that temperature buffering effects of
large water bodies can cause senescence gradients in the study area which may hamper
the classification, similar effects can be expected for altitudinal gradients (Fassnacht et al.}
2016).

Despite the fact that tree species mapping obtain more accurate results using multi-seasonal
imagery, it is also important to consider the higher costs and processing requirements as-
sociated with multiple acquisitions. These considerations might become a restriction of
phenological approaches, and thus a single image acquired in the optimal season may be
more important (Fassnacht et al.| 2016} [Karlson et al., 2016} |Pu et al., |2018])). [Karlson et al.
(2016) has established that dry season imagery provide better classification results for
mapping West African agroforestry tree species than imagery acquired in the wet season.
During the dry season some tree species are undergoing senescence and leaf shedding
earlier than others, or begin to develop new leaves, which tend to have rather divergent
colours. These phenological stages cause tree species to be more separable from each
other. In contrast, peak productivity occurs during the wet season leading to a lower spec-
tral variability, therefore reducing the classification accuracies. Additionally, frequent cloud
cover hinders image acquisition, favouring dry season imagery even more (Karlson et al.,
2016).

2.2.2 Height information

The use of multispectral and hyperspatial imagery products have traditionally enabled the
identification of individual tree species, but it is evident from various structural remote
sensing studies (e.g. |Cho et al.|(2012); Holmgren et al.| (2008)) that structural information,
especially tree height, plays an important role in assisting or being solely used in vegeta-
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tion cover and tree species classification and mapping. Structural variables may help to
reduce spectral confusion, for instance, when a particular tree species possesses spectral
properties similar to the underlying grass layer. However, the cost of additional data sets is
likely to challenge budget constraints (Kato et al.,|2009; |[Naidoo et al., 2012} Vaughn et al.,
2012)).

LiDAR remote sensing was found to capture variations in the three-dimensional (3D) struc-
ture of vegetation (Sarrazin et al.| [2011)), particularly vegetation height. LiDAR is an active
sensing technology using a laser to transmit a light pulse towards a target and a receiver
to measure the backscattered or reflected light from that target. The distance to the object
is determined by recording the time interval between the transmitted and backscattered
pulses (Cho et al., |2012). These data allow for measuring structural attributes and physical
parameters of vegetation at the individual tree crown and canopy levels. These structural
and biophysical measures may include tree height, above ground biomass, forest stand
density, basal area, and leaf area index at both the individual tree and stand level (Pu and
Landry, 2020). The position of individual trees can also be measured with sub-metre accu-
racy (Holmgren et al., 2008)). Generally, tree height and stem location are derived from a
normalised digital surface model (nDSM) or canopy height model (CHM). A CHM represents
the difference between the top canopy surface and the underlying ground topography by
taking the difference between a digital surface model (DSM) and a digital terrain model
(DTM), and contains all information necessary to determine the vegetation height above
the ground level. The resulting raster images allow to detect treetops and delineate in-
dividual tree crowns (Kato et al., 2009} Panagiotidis et al., |[2017). There exist two kind
of LiDAR-systems, on the one hand discrete-return devices, on the other hand full wave
recording devices. The former captures returns from individual structures, which can pro-
vide more direct measurements of individual tree crown parameters, whereas the latter
focuses primarily on plot-level estimations of canopy structures (Kato et al., [2009). For tree
species classification, several studies (e.g. [Vaughn et al.| (2012)) have reported improve-
ments in classification accuracy when applying waveform data sets, because they provide
an increased number of echoes that can be extracted compared to typical discrete return
data acquisitions (Fassnacht et al., |2016). Airborne LiDAR data sets are rare and expensive
to collect, while spaceborne LiDAR-systems are inappropriate for tree height mapping at
the individual level due to the wide gaps between laser shots and laser footprints. How-
ever, other satellite-based approaches are being developed which have good potential to
produce VHR (ca. 2 m) tree height models (i.e. interferometry and Tandem-X, or stereo
mapping) (Cho et al.,[2012).

Fassnacht et al.| (2016) has stated that canopy height per se is an illogical predictor to
classify tree species, because the absolute height of a tree species mainly varies with age,
site conditions, and competition and only to a minor degree with species. Consequently,
height information rather leads to confusion than to improving the discriminative power
in presence of several age classes of a single species (Fassnacht et al., [2016), but it was
found to improve classification accuracies of smaller trees (Naidoo et al., [2012). Alterna-
tively, the combination of structural and spectral variables may help to overcome the high
intra-species spectral variability, while taking advantage of known differences in structure
between species (Naidoo et al.,[2012). It has been demonstrated that combining VHR satel-
lite imagery with airborne LiDAR data can be an effective approach for monitoring forest
stands, mapping individual tree crowns, and classifying tree species and species compo-
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sition. This is attributed to a synergy of VHR data providing sufficient spatial and textural
information, and LiDAR data providing vertical profile and structural information, which to-
gether is beneficial for tree species classification (Pu and Landry, 2020). |Cho et al. (2012)
has shown that the difference in overall accuracy when using a combined spectral and
height data set versus a spectral only data set was small. Even though, the advantages
of using an integrated approach could be traced in the steps leading to the classification,
and in the classification output at the individual species level. A tree height mask allows
to easily extract tree spectral information from the image, which would be a challenging
task with spectral data only. |Cho et al.| (2012) has established that another advantage of
using height information is the decrease in misclassification of short trees as tall trees and
vice versa, but this advantage was balanced by an increased confusion between trees of
the same height category. In conclusion, LiDAR-derived or stereo image-based vegetation
height can be used to separate non-canopy from canopy elements using height thresholds,
followed by a species classification based on passive optical information (Fassnacht et al.|
2016)).
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3. MATERIAL AND METHODS

The concepts and methods discussed in Chapter [2] were applied and modified for the dif-
ferentiation of Melia volkensii in an agroforestry layout in the region of Kiambere based
on Pléiades satellite imagery. An overview of the study area and the data used, including
image data as well as ground truth data, is provided, followed by a detailed description of
the method developed to differentiate Melia volkensii.

3.1 Study area

The study focused on the region of Kiambere, situated in Kitui County in central Kenya,
where both a plantation and cooperation with local farmers in an agroforestry layout oc-
cur (Figure [3:I). The plantation borders on Lake Kiambere, which is artificially formed
after building a dam on Tana River, and has an area of approximately 300 ha. The area
is mainly planted with mukau (Melia volkensii), but a small part is also provided for neem
(Azadirachta indica) and acacia (Acacia sp.). These trees have different planting years, with
the oldest planted in 2007 and the youngest in 2020. The farms are located east of Lake
Kiambere, 38 of them are enrolled in the Seven Forks Farmers Programme, where BGF col-
laborates with smallholder farmers to plant mukau trees in their fields. These trees are all
planted between 2015 and 2019 (Better Globe Forestry, nd). Next to Melia volkensii, there
are some trees planted by the farmers themselves such as mango (Mangifera indica), and
acacia, but they also planted some additional mukau trees that are no property of BGF.
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Figure 3.1: Location of the study area in central Kenya, with indication of the plantation

(red line), bordering on Lake Kiambere, and the 38 farms (yellow dots)
OpenStreetMap, nd).

According to the Kdppen-Geiger climate classification system, Kiambere is situated in a
hot semi-arid (BSh) climate zone. These climates tend to have hot summers and warm
to cool winters, with minimal to some precipitation (Beck et al., [2018). Kitui county ex-
periences two wet seasons, a long rainy season from March until May and a short rainy
season from October until December. The mean annual precipitation varies between 400
and 1000 mm, with an average of 750 mm. The mean annual temperature ranges between
21 and 31 °C (Figure[3.2) (The Ministry of Agriculture, Livestock, Fisheries and Co-operatives|
((MoALFC), 2021)). The soil type in the region of Kiambere is classified as well-drained, deep
to very deep, dark reddish brown to yellowish red, friable, sandy clay to clay (i.e. luvisols
or acrisols) (European Soil Data Centre (ESDC), |nd).
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Figure 3.2: Historical monthly mean temperature (°C) and precipitation (mm) (average
1985-2015) for Kitui County. Bars represent total monthly precipitation, while lines rep-
resent minimum (blue line) and maximum (red line) monthly mean temperatures (The Min-
istry of Agriculture, Livestock, Fisheries and Co-operatives (MoALFC)|, 2021).

3.2 Data collection

3.2.1 Image data

Pléiades satellite imagery was selected for use in this study. The image was acquired on 2
June 2021 (at 07:52 AM local time), covering an area of approximately 14 x 9 km (Figure
[3.3). Pléiades collects data in one panchromatic band and four multispectral bands (i.e. red
(R), green (G), blue (B), and near infrared (NIR)) (Table (Coeurdevey and Fernandez,
2012). The image was reprojected to the Universal Transverse Mercator (UTM) coordinate
reference system (CRS) (datum: Worldwide Geodetic System 84 (WGS 84), zone 37S) and
digital numbers were converted to top-of-atmosphere (TOA) reflectance values, resulting in
a 16-bit image at pre-processing level 1C.

A 0.50 m resolution pan-sharpened Pléiades image was produced by fusing the 2 m reso-
lution multispectral imagery with the 0.50 m resolution panchromatic imagery using the
SPEAR pan-sharpening tool in ENVI 5.6.1 with the Gramm-Schmidt spectral sharpening
method. Some studies have demonstrated that a pan-sharpened image might improve
classification results of forests (Section [2.2). Therefore, all further analysis including image
segmentation, feature calculation and tree species classification were conducted based on
the 0.5 m resolution pan-sharpened Pléiades image (Pu et al., [2018).
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Figure 3.3: True colour composite of the Pléiades imagery with a spatial resolution of 2 m
(Airbusl, 2021).

Table 3.1: Spectral domain (nm), according to the standard expression Full Width at Half
Maximum (FWHM), and spatial resolution (m) for each band (Coeurdevey and Fernandez,
2012)

Band Imin FWHM (nm) Imax FWHM (nm) Spatial resolution (m)
Panchromatic 490 810 0.5

Blue (B) 460 530 2

Green (G) 520 600 2

Red (R) 610 690 2

Near Infrared (NIR) 770 890 2

3.2.2 Ground truth data

A field inventory was conducted between October 2021 and January 2022 where a total of
64 square inventory plots (32 m x 32 m) in the plantation and 17 farms were collected.
Information regarding their location in the study area can be found in respectively Table[A]
and Table[A.2]in Appendix[Al BGF divided the plantation into grid cells of 10 ha each. In each
grid cell an inventory plot was randomly located where all trees were measured. In some
grid cells with a tree coverage of more than 5 ha, an extra inventory plot was provided.
Grid cells covered by clouds on the Pléiades imagery were not visited. A full inventory of
the Melia volkensii trees belonging to BGF in the farms was conducted. Farms with less
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than 30 standing seedlings and farms covered by clouds on the Pléiades imagery were not
visited, consequently, data was collected in 17 out of the 38 farms. The following variables
were surveyed in the plantation, as well as in the farms:

1. Location: X, Y coordinates using a handheld global positioning system (GPS) (Garmin
60scx). The coordinates were recorded at the north side of the trunk and notated in
CRS WGS 84 / UTM zone 37S.

2. Species: identification in the field.
3. Diameter at breast height (cm): tree diameter measured 1.3 m above surface.

4. Crown diameter (cm): average of crown diameters measured in the North-South and
East-West direction.

5. Height (m): total tree height measured with the phone application Arboreal - Tree
height.

6. Tree age (year): in the plantation, the age was notated on the trunk of each tree. In
the farms, the age was taken note of when it was recorded during planting.

7. Soil degradation: visual assessment based on soil erosion by water, since this is one
of the main causes of soil degradation in Kenya (Luvai et al., [2020). Three types of
soil loss were considered, namely sheet erosion, rill erosion, and gully erosion (Omuto,
2008).

8. Tree vitality: visual assessment based on expert knowledge. The trees were given a
score ranging from 1 (perfect) to 5 (almost dead).

A summary of the descriptive statistics of Melia volkensii in the plantation as well as in the
farms is given in Table [3.2] A similar table for data collected of neem, acacia, and baobab
in the plantation can be found in Appendix [B]
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Table 3.2: Descriptive statistics of Melia volkensii in the plantation as well as in the farms.
The trees are divided in classes of 5 cm diameter at breast height (DBH) (cm). For each
class, the average crown diameter (cm), height (m), age (year), and vitality (1 to 5) are
calculated. Additionally, the number of trees (%) in each class is represented.

DBH (cm) Crown Height (m) Tree age Tree Number of
diameter (cm) (year) vitality trees (%)
Plantation
0.0-5.0 131.57 3.87 6.12 1.97 1.78
5.0-10.0 262.00 7.33 8.34 1.65 14.59
10.0-15.0 410.98 9.73 9.43 1.28 46.98
15.0-20.0 521.19 11.03 10.15 1.12 30.76
20.0 - 25.0 625.71 12.31 10.61 1.18 4.99
25.0 - 30.0 644.64 10.83 13.82 2.09 0.58
30.0 - 35.0 676.70 10.54 13.80 1.20 0.26
35.0-40.0 NA NA NA NA 0.00
40.0-45.0 NA NA NA NA 0.00
45.0 - 50.0 1150.00 12.20 15.00 1.00 0.05
Farms
0.0-5.0 163.43 12.2 2.85 1.71 16.82
5.0-10.0 300.70 5.35 3.36 1.57 45.60
10.0-15.0 441.33 7.63 3.96 1.28 28.25
15.0-20.0 590.69 9.11 4.78 1.20 6.83
20.0 - 25.0 745.11 9.80 5.00 1.36 1.84
25.0 - 30.0 718.90 12.20 5.00 3.00 0.66

Since the location of single trees was the most important variable of this study, extra at-
tention was paid to it during data processing. Firstly, all trees with incorrect X and/or Y
coordinates were removed from the data set. Besides, some trees were recorded in the
wrong CRS, namely WGS 84. After some control measurements, where the same trees
were measured in CRS WGS 84 as well as CRS WGS 84 / UTM zone 37S, there was neither
an observable relation nor a large distinction between both CRS. Therefore, reprojection of
the location of these trees to CRS WGS 84 / UTM zone 37S using QGIS 3.16.16 was suffi-
ciently accurate. Additionally, the GPS had an accuracy of 3 m, hence, based on the image
data, data points in the farms were as much as possible manually relocated to the centre
of the tree crown. In consequence, this may affect the final classification results. This was
not possible in the plantation due to the sometimes high density resulting in overlapping
crowns. Furthermore, trees with a crown area less than 0.25 m? were removed from the
data set, since they were not detectable as a result of the spatial resolution of the image
data. This was also done for trees with considerable crown areas according to the field
inventory, yet undetectable on the image data. Finally, the ground truth data set included
2408 theoretically detectable trees in the plantation and 765 in the farms. Table gives
an overview of the frequency of each tree species in the data set per afforestation layout.
Since [Fassnacht et al.| (2016) has recommended the use of a completely independent test
set for tree species classification studies, the final data set was randomly split into two
thirds training data and one third test data (Section [4.2.2).
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Table 3.3: Frequency (%) of each tree species in the data set per afforestation layout.

Species Frequency in field data (%)
Scientific name Common name Plantation Farms
Melia volkensii Mukau 78.91 100.00
Azadirachta indica Neem 17.64 0.00
Acacia sp. Acacia 3.32 0.00
Adansonia sp. Baobab 0.12 0.00

3.3 A method to differentiate Melia volkensii

An object-based classification approach was used to differentiate Melia volkensii from its
surroundings and other tree species at the individual tree crown level in an agroforesty
layout, based on the pan-sharpened Pléiades imagery. Object-based image analysis (OBIA)
was chosen because it can deal with the high spectral variability associated with very high
resolution (VHR) data (Benz et al.|, 2004). Moreover, this spectral variability is often aug-
mented when the image objects to be classified are larger than the pixel size, which is
frequently the case when using VHR imagery for tree species classification (Karlson et al.,
2016). Additionally, OBIA has produced significantly more accurate tree species classifica-
tion results compared to pixel-based approaches, especially when applied in regions with
small-scale farming (Canovas-Garcia and Alonso-Sarria, [2015), due to the reduced salt-and-
pepper effects (Immitzer et al.,|[2012), and the availability of shape and topological features
on top of more meaningful spectral and textural features (Benz et al.| [2004) (Section [2.1).

The first step of differentiating Melia volkensii in the farms concentrated on masking out the
candidate tree crown (CTC) class from other land cover classes (i.e. non-tree crown (NTC)
class). Several sub-steps were considered to mask the CTC class with a minimum error in
inclusion of all CTC class objects and exclusion of the regions belonging to the other classes
(Vahidi et al., [2018])). After extracting most of the NTC class objects, supervised classification
with Random Forest was conducted. The classifier was applied twice. First for extracting
the remaining NTC class objects from the CTC class, and second for differentiating Melia
volkensii from other tree species. An overview of this workflow is given in Figure[3.4]
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3.3.1 Extracting the non-tree crown (NTC) class

A CTC mask within the farms was created by extracting NTC class objects in several steps.
Firstly, the regions of interest (ROI) (i.e. the 17 farms where ground truth data was col-
lected) were extracted from the image data. Secondly, multiresolution segmentation was
performed after optimisation of the segmentation parameters. Finally, CTC class objects
were masked out from NTC class objects in several sub-steps.

Masking regions of interest (ROI)

During this step, clouds were extracted from the satellite imagery using a cloud mask that
was delivered together with the Pléiades imagery, but it was manually refined in QGIS.
Besides, vector layers of the ROI were created and merged with the cloud mask. The
resulting vector layer was used for a vector-based segmentation in eCognition® Developer
version 10.2 to create an object level containing all farms without cloud coverage.

Multiresolution segmentation

Multiresolution segmentation requires the specification of four key parameters, namely im-
age layer weights, shape (versus colour), compactness (versus smoothness), and scale.
These parameters are often set using trial-and-error experimentation and so rely on a high
degree of subjectivity. In this study, some pre-segmentation analysis methods, based on
literature, were tested to reduce subjectivity (Section[2.1.1).

A principal component analysis (PCA) of the image data was executed in Matlab 9.11.0 to
determine the image layer weights. Furthermore, the shape (versus colour) factor was op-
timised using the variance texture enhancement operator (Equation[2.1)), following [Munyati
(2018), to determine whether the different tree species were more separable by reflectance
(i.e. colour) or by texture (i.e. shape). In the farms there was only data collected of one
tree species, namely Melia volkensii. Because of that, the shape factor could not be deter-
mined based on the variance texture enhancement operator. Nonetheless, considering that
the climatic and edaphic characteristics of the farms are similar to these of the plantation
(Section [3.1), the shape factor was optimised based on the ground truth data collected in
the plantation. The original spectral bands were uploaded into Matlab to calculate the op-
erator in 3 x 3 kernels, resulting in a texture image for each spectral band. Afterwards, the
reflectance values of the training data were determined in QGIS for both the untransformed
and the texture-enhanced images. The resulting shapefile was used to generate descriptive
statistics such as mean and coefficient of variation (CV) in Matlab. This was calculated for
every untransformed as well as texture-enhanced image, and for every tree species. These
statistics were then used to compare both images and derive the shape (versus colour)
factor based on the average range in reflectance mean values of all bands for both images.
Besides, the compactness (versus smoothness) factor was set to 0.4 as vegetation has in
general more transitional edges, but due to the sometimes large variation in crown density,
this factor was not weighted too large.
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The 'Estimate Scale Parameter’ (ESP) tool developed by Dragut et al.| (2014) allows an au-
tomated estimation of the optimal scale parameter. However, two important shortcomings
were identified while running this tool: (1) a long processing time for extended areas, and
(2) not being able to target specific areas of interest. Instead, the optimal scale parameter
was estimated by maximising the internal homogeneity of the image objects, calculated
as the average local variance, and the external heterogeneity between the image objects,
calculated as the spatial autocorrelation, using the methodology proposed by Kim et al.
(2008). Given that this method is only applicable at one single layer simultaneously, the
NIR band was selected over the visible bands (i.e. B, G, and R) to perform the calculations,
because visible radiation is predominantly absorbed by leaves. On the contrary, NIR can
reveal vegetation differences as it can transmit through the top layer of the canopy, reflect
off lower layers, and then transmit back through the canopy to the sensor, revealing the
variability below the top of the canopy (Campbell and Wynne, 2011). First, a rough cut
of scale parameters (15 - 20 - 25 - 30 - 35 - 40 - 45 - 50) was made. These scales were
chosen after some preliminary segmentations, because it was established that their range
extend from over- to under-segmentation. For reducing processing time, the segmenta-
tions were executed in a hierarchical manner, which means that the information obtained
in segmentations with lower scale parameters were used for segmentations with higher
scale parameters (Canovas-Garcia and Alonso-Sarria, [2015). After running the multireso-
lution segmentation algorithm in eCognition® Developer with these scale parameters, the
obtained image objects were uploaded into QGIS. For each image object, the mean and
standard deviation of their spectral reflectance values were computed. Afterwards, the av-
erage local variance was calculated as the average of the standard deviation of all image
objects and graphed as a function of the associated scale parameters. Additionally, spatial
autocorrelation of the image objects was computed based on the global Moran’s | index.
This index measures, on average, how similar an image object is to its neighbours, hence it
is a reliable indicator of statistical separation between spatial objects (Fotheringham et al.,
2000). The index was calculated from the mean values using ArcMap 10.8.1. The contiguity
matrix was calculated from the squared inverse Euclidean distance between image object
centroids. The resulting indices were also graphed as a function of the associated scale pa-
rameters. Eventually, the optimal scale should occur just before flattening of the average
local variance curve and at the scale associated with the lowest, and even negative, values
of the Moran’s | index (Kim et al., |2008).

After running the multiresolution segmentation algorithm with the optimised parameter
set, object primitives were obtained, which did not yet have any meaning. In the following
steps, the object primitives were assigned to more semantically relevant classes in order
to match them with real-world objects of interest, namely individual tree crowns.

Masking the candidate tree crown (CTC) class

The first step of endowing the object primitives with meaning consisted of masking out the
CTC class objects from NTC class objects, particularly understory vegetation (i.e. grass and
shrubs), using several sub-steps following Vahidi et al.| (2018). In absence of height infor-
mation, the elevated vegetation layer (rough texture) was separated from the understory
vegetation (smooth texture) by performing edge extraction Lee Sigma filtering for detecting
both bright and dark edges in the R band (sigma value = 5). A new band (LeeSigmaSum)
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was generated by adding the bright edge Lee Sigma band into the dark edge Lee Sigma
band. Then, the Gaussian smoothing filter with a kernel size of 25 x 25 pixels was applied
to the LeeSigmaSum band, resulting in the Roughness band. The CTC class was separated
from the NTC class by thresholding on both the R to Roughness ratio and the normalised
difference vegetation index (NDVI) (Equation (3.1) (Vahidi et al., 2018).

NDVI = ———— (3.1)
+

High NDVI values result from a combination of a high reflectance in the NIR and lower
reflectance in the R band, which is typical for the spectral signature of vegetation, while
non-vegetated areas, such as bare soil and open water, will have much lower NDVI values.
This is why NDVI is widely used for vegetation monitoring and assessment (Lillesand et al.,
2015). The threshold values for both the R to Roughness ratio and the NDVI were deter-
mined with the automatic threshold algorithm in eCognition® Developer. This algorithm
detects the best threshold value where the histogram of the layer can be split into dark and
bright parts. The weighted standard deviation for both the dark and bright part is calculated
and compared with the overall standard deviation. The maximum value found represents
the threshold value associated with the best differentiation between these dark and bright
parts (User Guide eCognition® Developer, [2019). Finally, the image objects obtained after
applying the multiresolution segmentation algorithm were assigned to the CTC class when
they met both conditions in Table [3.4] However, after applying these conditions, the CTC
mask was not yet precise enough because it still included some ridges, shadows, and bare
soil. Therefore, additional conditions were implemented for further refinement of the mask.

Ridges were extracted using a linear analysis based on the object shape features com-
pactness and length/width. The threshold values for both features were set after visual
assessment (Table [3.4). However, some tree crowns also included linear objects. There-
fore, additional features were added to reassign these objects to the CTC class. For this,
the topological features relative border to CTC and relative area of CTC were chosen. Their
threshold values were also set after visual assessment (Table [3.4)).

Shadow areas appear with different intensity, brightness, and lower contrast compared
to sunlit regions, as well as unwanted contrast in the borders of shadow overcast areas
(Tatar et al., [2018). In view of this, shadow was masked, because it may severely affects
visual interpretation and automatic identification of ground features on VHR satellite im-
agery, hence it may also affect the quality and the accuracy of the classification results
(Duan et al., [2013; Mostafa and Abdelhafiz, 2017). First, pixel-level shadow detection was
performed using multi-threshold segmentation based on the shadow detector index (SDI)
(Equation [3.2)). This index was chosen because [Mostafa and Abdelhafiz (2017) has estab-
lished that the rate of truly detected pixels is higher compared to other state-of-the-art
indices, such as the Cs-index. Besides, the index shows stability with vegetation regions
(Mostafa and Abdelhafiz, [2017).

. (1-PC1)+1
T ((G=B)*R)+1

SDI (3.2)

with G, B, and R are normalised components of respectively the G, B, and R band, nor-
malisation of these bands was performed in Matlab. Furthermore, PC 1 is a normalised
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component of the first principal component (PC), wherefore all four spectral bands were
employed. The listed bands were used in a way to maximise the fraction numerator and to
minimise the fraction denominator. Finally, large values of the index were obtained where
shaded regions occur (Mostafa and Abdelhafiz, [2017). The threshold value of the SDI index
was determined with the automatic threshold algorithm (Table [3.4). Afterwards, CTC class
objects were assigned to the shadow class based on the topological feature majority vote
area. This feature classifies a super-object based on the classification majority of his sub-
objects, whereby the majority class is returned based on the largest area of the sub-objects
(User Guide eCognition® Developer, 2019).

Table 3.4: Indices and features with their corresponding threshold values used to separate
the candidate tree crown (CTC) class from ridges and shadow.

Class Index or feature Threshold

CTC R to Roughness <55
NDVI > 0.24

Ridges = Compactness <04
Length/width >3
Relative borderto > 0.6
Relative area of > 0.95

Shadow SDI > 3.01

During the final step of masking the CTC class, the object primitives were merged using
the spectral difference segmentation algorithm in order to improve their spatial correspon-
dence with real landscape objects (Canovas-Garcia and Alonso-Sarria, 2015). Based on
visual assessment, the maximum spectral difference was set to 70 because it was estab-
lished that this value attenuates most of the over-segmentation obtained after running the
multiresolution segmentation algorithm. Because of this, the number of image objects was
reduced, and these newly formed image objects were more likely to represent actual tree
crowns. The resulting image objects with an area of more than 1000 pixels, correspond-
ing to approximately 250 m?2, were removed because the objects of interest will probably
not have such large areas, for instance, the largest measured tree crown had an area of
approximately 94 m2. Considering the fact that some tree crowns might be merged into
one image object, the threshold value was set sufficiently high so these trees would not be
missed.

3.3.2 Supervised classification

The supervised machine learning algorithm Random Forest was applied for the classification
of the CTC mask, obtained at the end of the previous section. After visual assessment of
the mask, it was decided to run the Random Forest algorithm twice. First for an additional
refinement of the mask by extracting the last remaining NTC class objects as much as
possible, and second for classifying the resulting CTC objects into Melia volkensii and other
tree species. In both cases, the algorithm was applied three times using different feature
sets: (1) spectral features only, (2) a combination of spectral and textural features, and (3)
a combination of spectral, textural, and shape features. Lastly, the accuracies of the best
performing classifiers were assessed.
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Reference data is needed to run the Random Forest algorithm. The field inventory provided
data concerning the occurrence of Melia volkensii (Section [3.2.2)), but reference data for
the remaining NTC class objects and other tree species were missing. Therefore, additional
reference data were manually selected within the CTC mask, based on the Pléiades satellite
imagery in QGIS. The NTC class included ground features such as bare soil, grass, and small
bushes, whereas the other tree species class included several tree species and some larger
bushes that were difficult to distinguish from trees on the satellite imagery. It has to be
noted that only Melia volkensii trees that are property of BGF were included in the ground
truth data set obtained after the field inventory. However, local farmers planted some Melia
volkensii trees themselves, so there exists a significant possibility that some of these trees
were included in the class of the other tree species as they are not visually distinguishable
based on the satellite imagery. Finally, 139 NTC class objects and 180 objects belonging to
the other tree species class were included in the reference data set.

Feature calculation

Prior to classification, the following object features were generated in eCognition® Devel-
oper, only intrinsic object features were calculated since these are available for each image
object:

e Spectral features

- Mean band value: the mean value represents the mean brightness of an image
object within a single band (Mishra and Crews, 2014). This feature is generated
for every spectral band (i.e. B, G, R, and NIR).

- Standard deviation (StdDev): standard deviation of all pixels which form an image
object within a band (Mishra and Crews), [2014). This feature is also generated for
every spectral band (i.e. B, G, R, and NIR).

- Brightness: this value represents the mean value of the spectral mean values of
the four spectral bands (i.e. B, G, R, and NIR) of an image object (Van Coillie et al.,
2007).

- Maximum difference (max. diff.): minimum value of an image object subtracted
from its maximum value. The means of all bands belonging to an image object
are compared with each other and the result is divided by the brightness (Mishra
and Crews, [2014).

- Band ratios

x Enhanced vegetation index (EVI) (Equation [3.3): this index was developed
to optimise the vegetation signal with improved sensitivity in high biomass re-
gions and improved vegetation monitoring through a decoupling of the canopy
background signal and a reduction in atmospheric influences.

NIR —R

EVI=G * (3.3)
NIR+ (C1*R)—(C2*B)+L

with G is a gain term, C1 and C2 are the coefficients of the aerosols resistance
term, which uses the B band to correct for aerosol influences in the R band,
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and L is a soil-adjustment factor (Jiang et al., |2008). The parameters G, C1,
C2, and L were set to their default values, respectively 2.5, 6, 7.5, and 1.

+ NDVI (Equation [3.1)

* Normalised difference water index (NDWI) (Equation[3.4)): this index, proposed
by [McFeeters| (1996), was designed to highlight open water while eliminating
the presence of soil and terrestrial vegetation. The former returns positive
values, whereas the latter has zero or negative values (McFeeters, 1996).

NDWI = ———— (3.4)

* Ratio vegetation index (RVI) (Equation [3.5): this index was developed for the
estimation and monitoring of vegetation cover. It enhances the contrast be-
tween the ground and vegetation, but the index is sensitive to atmospheric
effects and its discriminating power is weak when the vegetation cover is
sparse, while the performance of the index increases in densely vegetated

areas (Bannari et al., [1995)).
NIR

* Soil-adjusted vegetation index (SAVI) (Equation |3.6): this index was designed
to compensate for a soil background in sparsely vegetated areas (Lillesand

et al.| [2015).
(1+ L)(NIR—R)
SAVI = (3.6)
(NIR+R+1L)

with L is a soil-adjustment factor. This factor was set to 0.5 for it was found
to minimise soil brightness variations and eliminate the need for additional
calibration to adjust for different soils (Huete) [1988).

e Textural features: first and second order texture measures, including angular second
moment (ang. 2nd moment), contrast, correlation, dissimilarity, entropy, homogene-
ity, mean, and standard deviation, in four spatial directions (i.e. 0°, 45°, 90°, and 135°)
derived from:

- Grey-level co-occurrence matrix (GLCM): describes how different combinations of
pixel values occur within an image object (Mishra and Crews, |2014).

- Grey-level difference vector (GLDV): sum of the diagonals of the GLCM (Mishra
and Crews, [2014).

e Shape features: shape index (i.e. the border length of an image object divided by four
times the square root of its area (Van Coillie et al., [2007)), length/width, area (pixels),
length (pixels), and number of edges.

In total, 68 features were calculated of which 15 spectral features, 48 textural features, and
5 shape features.

Random Forest

First, it was tried to apply Random Forest in eCognition® Developer. The classifier is em-
bedded in the supervised classification algorithm and allows to specify several parameters
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including the number of decision trees, the number of input features, and the maximum
depth of the forest. However, these hyperparameters (i.e. parameters that do not learn
from the data (Pramodithal, 2020)) can only be tuned through some trial-and-error experi-
mentation. Moreover, eCognition® Developer does not allow the application of an iterative
data-splitting approach such as K-fold cross-validation (i.e. one of the best re-sampling ap-
proaches with limited input data, ensuring that every observation from the original dataset
has the chance of appearing in the training and test set (Sanjay, 2018)). Lastly, feature
selection has to be performed manually and is a very time-consuming process. This is why
the Random Forest classification was eventually implemented using the caret package in
RStudio 4.1.3.

A grid search (i.e. a hyperparameter optimisation technique) was performed to tune the two
most important hyperparameters of Random Forest, namely the number of decision trees
for executing the classification (ntree), and the number of input features used at each tree
node (mtry). During this procedure, an optimal combination of hyperparameter values was
searched so the best performing model would be obtained. The Random Forest classifier
was trained for each combination of hyperparameter values and then evaluated through re-
peated K-fold cross-validation with ten folds and three repeats. K-fold cross-validation split
the data set randomly into ten independent folds without replacement, of which nine folds
were used for model training and one fold for evaluation of the performance. The model’s
performance was evaluated as the Cohen’s Kappa coefficient (see Accuracy assessment).
This procedure was run ten times and a performance estimate for each iteration was ob-
tained (Pramodithal, [2020). During repeated K-fold cross-validation, the cross-validation
procedure was repeated an additional three times and the mean performance across all
folds from all runs was reported (Brownlee, [2020). The grid search stored all performance
estimates after taking all combinations of hyperparameter values, and selected the optimal
combination (Pramoditha), 2020). For mtry, each value between one and 15 was tested in
steps of one, while for ntree the values were set to 10, 25, 50, 100, 200, and 500. This
procedure was executed for all three feature sets. Finally, the feature set with the highest
performance after the grid search was chosen for further analysis.

As described in Section the classification algorithm might overfit when it faces a
sparse number of training samples compared to the number of predictors. Feature selection
may prevent this and even improve classification accuracy. Therefore, recursive feature
elimination was performed on the feature set selected after the grid search. Recursive
feature elimination is a backward selection procedure to identify the optimal combination
of features. The Random Forest model was built based on all features and the importance
of each feature was calculated as Mean Decrease Gini (MDG). This measure is calculated
within the model and indicates how each feature contributes to the homogeneity of the
nodes and leaves in the resulting Random Forest. The higher the value, the higher the
importance of the feature in the model (Martinez-Taboada and Redondo, 2020). During the
procedure, all features were rank-ordered and the lowest-ranked features were successively
removed based on the model’s performance, evaluated as the Cohen’s Kappa coefficient.
This process continued until a smaller subset of features with the highest performance
was retained (Bulut, 2021). The initial ranking was used throughout all of the iterations
to avoid model overfitting which may arise when feature importance is recalculated after
each iteration (Svetnik et al., 2004} [Karlson et al., |2016)). Additionally, repeated K-fold

35



cross-validation with ten fold and three repeats was used to improve the performance of
the feature selection procedure (Bulut, 2021).

This procedure was applied to the CTC mask, obtained at the end of Section for
extracting the remaining image objects representing the NTC class. The optimal model
was trained using a subset of the reference data containing 93 NTC objects and 104 CTC
objects of which the latter is a combination of data concerning both Melia volkensii and
other tree species. The resulting CTC class was further classified into the classes Melia
volkensii and other tree species by applying the same procedure. For this classification,
300 Melia volkensii objects and 110 objects of the other tree species class were used during
the training stage.

Accuracy assessment

After fitting the optimised model to the training data, the classification accuracy was as-
sessed based on a confusion matrix generated using an independent test set that was
not used during the training stage of the Random Forest model. This was done to test
the suitability of the proposed methodology for application in other areas, unknown by the
classifier, where BGF might be interested in. The independent test set for the evaluation of
the CTC/NTC classification contained 46 NTC objects and 58 CTC objects. The test set for
evaluating the model’s performance for the differentiation of Melia volkensii contained 126
Melia volkensii objects and 47 objects of the other tree species class. The confusion matrix
compared the relationship between these known test set objects and the corresponding re-
sults of the model (Lillesand et al., |[2015). Based on this matrix, several accuracy measures
were calculated:

e Producer’s accuracy: indicates how well test set objects of the given class are clas-
sified. It is calculated by dividing the number of correctly classified image objects in
each class (i.e. major diagonal) by the number of test set objects used for that class
(i.e. column total) (Lillesand et al., [2015). In other words, the producer’s accuracy
describes how well a specific area can be mapped (Story and Congalton| [1986).

e User’s accuracy: indicates the probability that an image object classified into a given
class actually represents that class on the ground (Lillesand et al., 2015)), so the user’s
accuracy describes how well a map represents what is really on the ground, and thus
is @ measure of its reliability (Story and Congalton, |1986). This measure is calculated
by dividing the number of correctly classified image objects in each class (i.e. major
diagonal) by the total number of image objects that were classified in that class (i.e.
row total) (Lillesand et al., 2015).

e Overall accuracy: this measure is calculated by dividing the total number of correctly
classified image objects (i.e. major diagonal) by the total number of test set objects
(Lillesand et al., |2015).

e Cohen’s Kappa coefficient: measure of the difference between the actual observed
agreement between reference data and an automated classifier and the chance agree-
ment between the reference data and a random classifier. This coefficient is an indi-
cator of the extent to which percentage of the correct classified image objects are
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due to "true" agreement versus "chance" agreement (Lillesand et al., [2015). Cohen’s
Kappa is a standardised value and thus is interpreted the same across multiple studies
(McHugh|, 2012). [Landis and Koch| (1977) has suggested benchmarks for the qualita-
tive interpretation of the relative strength of agreement: values lower than or equal
too 0 as indicating no agreement, 0.01.-0.20 as none to slight, 0.21-0.40 as fair, 0.41-
0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 as almost perfect agree-
ment (McHugh, 2012). McHugh| (2012) has argued that this interpretation allows very
little agreement to be described as substantial, and that accepting a Cohen’s Kappa
coefficient of 0.40 as moderate, and thus an adequate agreement, is not acceptable.
Therefore, another interpretation of Cohen’s Kappa has been suggested (Table [3.5),
keeping in mind that any agreement less than perfect is also a measure of disagree-
ment. A simplified interpretation of Cohen’s Kappa, according to [McHugh| (2012), is
that any Cohen’s Kappa coefficient below 0.60 indicates inadequate agreement and
therefore little confidence in the study results should be placed.

Table 3.5: Interpretation of the Cohen’s Kappa coefficient according to [McHugh|(2012).

Value of Kappa Level of agreement Data that are reliable (%)

0.00-0.20 None 0-4
0.21-0.39 Minimal 4 -15
0.40 - 0.59 Weak 15-35
0.60-0.79 Moderate 35-63
0.80 - 0.90 Strong 64 - 81
above 0.90 Almost perfect 82 -100

37



38



4. RESULTS AND DISCUSSION

In this chapter, the results of the different steps of the methodology developed to differ-
entiate Melia volkensii from its surroundings and other tree species will be presented and
discussed. First, the optimisation of the parameters of the multiresolution segmentation al-
gorithm, namely image layer weights, shape (versus colour), and scale, is discussed. Then,
a description of the candidate tree crown (CTC) mask and a few of its shortcomings is pro-
vided. Finally, the results of the supervised classification with Random Forest are discussed
to provide an answer on the research questions stated in Chapter|[1}

4.1 Optimisation of the multiresolution segmentation
algorithm

4.1.1 Determining image layer weight values

Principal component (PC) 1 explained most of the data variance (> 98 %), and thus pos-
sessed most of the information. All spectral bands loaded into PC 1 with high absolute
values (> 0.99), meaning that this PC contained a lot of information from all original bands
(i.e. red (R), blue (B), green (G), and near infrared (NIR)) (Table [4.I). Moreover, all bands
were highly correlated with each other (> 0.97) (Table [4.2). Based on these results, the
image layer weights for each original spectral band were set to one.

Table 4.1: Loadings of each spectral band (i.e. blue (B), green (G), red (R), and near infrared
(NIR)) in the principal components and the percentage (%) data variance they represent.

Principal component

Band 1 2 3 4

B -0.9958 0.0826 0.0402 0.0028
G -0.9996 0.0180 -0.0151 -0.0136
R -0.9987 0.0302 -0.0391 0.0089
NIR -0.9912 -0.1315 0.0142 0.0020

% data variance 99.1234 0.8245 0.0389 0.0025
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Table 4.2: Correlations between each spectral band (i.e. blue (B), green (G), red (R), and
near infrared (NIR)).

Band B G R NIR

B 1 0.9962 0.9955 0.9767
G 0.9962 1 0.9994 0.9882
R 0.9955 0.9994 1 0.9854
NIR 0.9767 0.9882 0.9854 1

4.1.2 Determining shape and colour weight values

Table [4.3]contains the reflectance statistics, mean and coefficient of variation (CV), for both
the untransformed as well as the texture-enhanced image. The range in reflectance mean
values within all four bands was largest for the untransformed image. This implicated
that the different tree species (i.e. Melia volkensii (mukau), Azadirachta indica (neem),
and Acacia sp. (acacia)) were more separable by reflectance (i.e. colour) than by tex-
ture (i.e. shape). According to [Munyati| (2018), higher CV values represent higher within-
class variability. The CV values of the untransformed image were higher than these of
the texture-enhanced image, so this was an additional argument to weigh colour higher
than shape. Moreover, Pu et al. (2018) has pointed out that several existing studies have
demonstrated that a higher weight coefficient for the colour criterion is frequently used to
extract more meaningful objects. The average of the range in reflectance mean values of
the untransformed image (859.2) was 36 % higher than the average of the range of the
texture-enhanced image (311.7). As a result, the colour weight value was set to 0.73. Con-
sequently, the shape factor was equal to 0.27, because these values are inversely related
to each other and sum to one.

Table 4.3: Top-of-atmosphere (TOA) reflectance statistics, mean and coefficient of variation
(CV) of each spectral band (i.e. blue (B), green (G), red (R), and near infrared (NIR)), and
each tree species (i.e. mukau (Melia volkensii), neem (Azadirachta indica), and acacia
(Acacia sp.)) for both the untransformed image as well as the texture-enhanced image.
The range in reflectance mean values within one band is also calculated.

TOA reflectance statictics: mean and CV

Untransformed image Texture-enhanced image

Species B G R NIR B G R NIR
Mukau Mean 1050.2 1015.6 765.2 2401.7 2680.2 2348.1 2038.0 3436.0
cv 579.7 731.4 635.0 9744 90.1 93.6 96.7 84.9
Neem Mean 832.3 856.3 650.4 2464.7 5073.4 4546.7 4065.9 5947.5
cv 3289 466.4 387.6 526.5 111.3 109.7 108.6 110.6
Acacia Mean 834.7 916.2 718.5 2525.1 1812.0 1332.1 1222.5 1760.9
cv 637.1 1076.3 917.7 1768.5 129.5 136.0 131.5 103.6

Range Mean 7925 8431 850.0 951.1 357.2 293.0 300.7 296.1

4.1.3 Determining the scale parameter

Figure (top) was obtained after determining the average local variance and the spatial
autocorrelation associated with the scales varying from 15 to 50 in steps of five. When
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4. Results and discussion

the scale parameter increased, the average local variance tended to increase, while the
spatial autocorrelation tended to decrease. This means that as the average size of the im-
age objects increased, the image objects tended to consist of more dissimilar pixels, and
became less similar to neighbouring image objects (Johnson and Xie, 2011). Following the
methodology of Kim et al.| (2008), it was expected that the optimal scale would occur just
before flattening of the average local variance curve, and at the scale associated with the
lowest spatial autocorrelation. However, neither of these requirements was met. Therefore,
scales varying from 50 to 400 in steps of 50 were tested (Figure[4.1] (bottom)). The average
local variance curve flattened around the scale of 300, whereas the spatial autocorrelation
still continued to decrease at the scale of 400, and thus did not reach its lowest value yet.
According to Johnson and Xie| (2011), the spatial autocorrelation will likely continue to de-
crease until the image objects become large enough to contain a mixture of many different
land cover types. Once all image objects become mixed, the spatial autocorrelation should
start to increase again. Despite this, the image was already visually under-segmented at
the tested scale parameters. The failure of the methodology proposed by Kim et al.| (2008)
in this area is probably caused by the variability in land cover classes. The study area in-
vestigated by Kim et al.| (2008) was a more homogeneous forest scene, in which spectral
values for the different land cover types were quite similar, whereas the farms in the re-
gion of Kiambere were more heterogeneous resulting in different spectral characteristics
for different land cover classes (Johnson and Xie, 2011)). According to |Canovas-Garcia and
Alonso-Sarrial (2015), the validity of internal homogeneity (i.e. average local variance) and
external heterogeneity (i.e. spatial autocorrelation) criteria to optimise the scale parameter
depends heavily on having a uniform study area for the scale parameter to be representa-
tive for the whole area.
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Figure 4.1: Average local variance (left), calculated as the mean standard deviation (Std-
Dev) of the near infrared (NIR) band of all image objects, as well as the spatial autocorre-
lation (right), calculated as the global Moran’s | index of the NIR band, for both the scale
values between 15 and 50 (top) and the scale values ranging from 50 to 400 (bottom).

Because of the failure of the methodology of |Kim et al.| (2008), the scale parameter was set
to 25 after visual assessment as increasingly more trees, mostly with small crowns, were in-
cluded in mixed objects when higher scale values were used. At this scale parameter, the in-
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dividual tree crowns were in most cases over-segmented, depending on the tree crown size
and variation of spectrum/structure within the crown (Pu et al., 2018)). Over-segmentation
was preferred over under-segmentation, because under-segmented image objects hold lit-
tle value since they likely contain more than one land cover class, while over-segmentation
can easily be handled in the following classification steps (Johnson and Xie, [2011; Canovas-
Garcia and Alonso-Sarria, 2015). Despite the presence of over-segmentation, some trees
were still not properly identified at a scale of 25 because they were too small for the spatial
resolution of the imagery, or too similar to the neighbouring objects for the radiometric
resolution of the sensor (i.e. the ability of a sensor to distinguish between grey-scale values
while acquiring an image (Lillesand et al., 2015)). The success of the segmentation of indi-
vidual trees in an agroforestry layout depends heavily on the reflectivity of bare soil, which
is related to the agricultural practices carried out. When there is another crop in the soil
underneath or a dense cover of weeds, worse results will be obtained. Additionally, devel-
oped canopies without gaps between them make it impossible to separate individual trees
and thus the quality of the segmentation may be variable (Canovas-Garcia and Alonso-
Sarria, |2015)). This is why, next to individual trees, some crown clusters were included in all
further analyses. The scale value of 25 was used for each farm, but, according to|Canovas-
Garcia and Alonso-Sarria| (2015)), a global approach requires some degree of uniformity in
the image. Therefore, (Canovas-Garcia and Alonso-Sarria| (2015) has suggested the use of
uniform spatial units, resulting from pre-existing land use maps, for the optimisation of local
scale parameters, so in future research it might be preferable to consider each farm as a
different spatial unit as some differences between them probably occur. Nonetheless, the
spatial uniformity within the farms is rather low so the success of a local approach is not
guaranteed either. Besides, the searching and manually digitising of uniform spatial units
within the farms would be time-consuming and run counter to the idea of a semi-automatic
method to differentiate Melia volkensii (Canovas-Garcia and Alonso-Sarria, |[2015). The use
of a multi-scale segmentation approach might be a viable solution for this, in particular
when the area under consideration is clearly composed of structures appearing at different
scales (e.g. stand level and tree level) (Trias-Sanz et al., [2008). Delineating more or less
homogeneous regions using a segmentation algorithm at a coarser scale, followed by a
delineation of individual tree crowns at finer scales may improve the segmentation results.
One of the prerequisites of the use of a multi-scale approach is the presence of somewhat
uniform regions in the area of interest, so it may be easier to perform a segmentation within
properly managed units which are clearly delimited on site.

It is important to note that scale values may not be generalisable to other images, since
they depend on the radiometric resolution of the sensor used (Canovas-Garcia and Alonso-
Sarria, [2015). In future research, it might be necessary to find more automated solutions
for determining the scale parameter, and by extension for the delineation of individual
tree crowns, in particular when Better Globe Forestry (BGF) wants to apply the proposed
methodology over more extended areas. Automated delineation of individual tree crowns
may be a challenging task, complicated by high tree densities and interlocking crowns,
or when tree canopies are spectrally similar to the background, but they are essential for
large-scale application (Immitzer et al., 2012 Karlson et al., 2016). In literature, there
exists a multitude of methods proposed to define the optimal scale parameter with a min-
imum of trial-and-error experimentation, some more complex than others and some more
automated than others. Especially further elaboration of the 'Estimate Scale Parameter’
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(ESP) tool, developed by [Dragut et al. (2014) might be viable, in particular making the
tool applicable on a preference object level might be beneficial for tree species classifi-
cation studies. Besides, in future research, seeded region growing algorithms, instead of
the multiresolution segmentation algorithm, might be more suitable for the delineation of
individual tree crowns. Seeded region growing, proposed by Adams and Bischof| (1994), is
a classic image processing method used in tree crown delineation that typically requires
treetops as an initial input. For this, the results of |Ghyselbrecht| (2022) can be used. The
algorithm starts from a set of seed points and grows regions until some stop criteria are
satisfied (Zhen et al., |2014). Various extensions and modifications have been proposed in
literature to improve the performance of seeded region growing (Fan and Lee, |2015), how-
ever, since both Master’s Dissertations were developed simultaneously, the seeded region
growing algorithm was not further explored in this study.

4.2 Candidate tree crown (CTC) mask

The candidate tree crown (CTC) mask was composed of two major steps, each consisting
of several sub-steps. Firstly, classification rules were drawn up in eCognition® Developer
based on literature and expert knowledge. After applying these rules, it was visually estab-
lished that the CTC mask was not yet precise enough, mostly due to some remaining bare
soil objects, so a Random Forest classification was performed for further refinement.

4.2.1 Rule-based classification

During the first step of the rule-based classification, most of the CTC objects were masked
out from non-tree crown (NTC) objects by thresholding on both the normalised difference
vegetation index (NDVI) and the R to Roughness ratio. However, after visual assessment,
three shortcomings of the mask were identified, which may influence the final classification
results. Firstly, some trees with smaller crowns were not properly identified by the multires-
olution segmentation algorithm as described in Section and therefore were included
in mixed objects with bare soil. As a result, these trees did not always meet the condi-
tions to be included in the CTC mask. Secondly, some smaller trees, that were included
in pure CTC objects, met either the NDVI condition or the R to Roughness ratio condition,
but not both. Consequently, they were also not included in the CTC mask. The criteria
were not altered based on expert knowledge because this would make the classification
procedure less automated, and thereby make it less reproducible in other areas of interest.
The third shortcoming is related to the inclusion of objects belonging to other land cover
classes. This error was mainly obviated by implementing extra conditions for the extraction
of ridges, shadow, and some remaining bare soil.

Ridges were probably masked because they were vegetated with crops, grasses, and small
bushes resulting in higher NDVI values. Moreover, differences in height may have caused a
lower R to Roughness ratio as a result of which they were identified as CTC objects. In con-
trast, ridges have distinctively different shapes than the surrounding tree crowns, namely
linear instead of circular, so linear analysis ensured the extraction of these NTC objects.
Nonetheless, it also caused some trees, located on the ridges, to be removed because they
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were included in the same image object. Furthermore, shadows were extracted because
the different intensity, brightness, and lower contrast might hamper the final classification.
By only considering the sunlit region of tree crowns, within-species variability was not in-
creased by varying illumination conditions within the tree crown (Immitzer et al., [2012). As
a result, many tree crowns were partly removed from the CTC mask. In future research, it
would be recommended to apply light normalisation on the shaded tree crowns to preserve
the shape of the crown, which may be beneficial in the following processing steps. Pu et al.
(2018) has developed two linear algorithms to normalise the spectra in shaded regions to
be similar to the spectra in sunlit regions. They have established that these algorithms
might have a great potential to mitigate the negative effects of shade on tree species clas-
sification. Training samples of both shaded and sunlit image objects within the same tree
crown are required to apply this method, but manually selecting these samples may be a
time-consuming process. Moreover, this process would have to be repeated when applied
to other images because light normalisation algorithms may not be generalisable due to
varying illumination conditions during image acquisition. Further research regarding the
automatisation of shadow detection and normalisation may be necessary. After eliminat-
ing shadows, the remaining bare soil was removed using the machine learning algorithm
Random Forest (Section [4.2.2).

4.2.2 Classification with Random Forest

The removal of the remaining bare soil objects was executed using a CTC/NTC Random
Forest classification. After performing optimisation of the hyperparameters (i.e. the number
of input features at each node (mtry) and the number of decision trees (ntree)), with a grid
search, for all three feature sets (i.e. (1) spectral features only, (2) a combination of spectral
and textural features, and (3) a combination of spectral, textural, and shape features), the
optimal combinations were selected and stored in Table [4.4] with their model’s performance.
The combination of all 68 features reached the highest average Cohen’s Kappa coefficient
(0.699) after repeated K-fold cross-validation, as well as the lowest out-of-bag (OOB) error
(16.24 %) and thus was selected for further analysis. All combinations of hyperparameters
and their associated performance, for the selected feature set, were stored in Figure[4.2]

Table 4.4: Optimal combination of hyperparameters (i.e. the number of input features at
each node (mtry) and the number of decision trees (ntree)) and the associated model’s
performance, measured as the average Cohen’s Kappa coefficient as well as the out-of-bag
(OOB) error (%), obtained after repeated K-fold cross-validation. These values resulted from
a grid search of the CTC/NTC Random Forest classification performed for all three feature
sets (i.e. (1) spectral features only, (2) a combination of spectral and textural features, and
(3) a combination of spectral, textural, and shape features)

Feature set ntree mtry Cohen’s Kappa OOB error (%)
Spectral 25 7 0.676 18.27
Spectral + texture 10 15 0.697 18.78
Spectral + texture + shape 100 14 0.699 16.24
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Figure 4.2: All combinations of hyperparameters (i.e. the number of input features at each
node (mtry) (dots) and the number of decision trees (ntree) (lines)) with their associated
model’s performance, measured as the Cohen’s Kappa coefficient, obtained after repeated
K-fold cross-validation. These values resulted from a grid search of the CTC/NTC Random
Forest classification performed for a combination of spectral, textural, and shape features.

Recursive feature elimination was performed 68 times for all features present in the spec-
tral, textural, and shape feature set. For each number of features, the model’'s performance
was stored in Figure [4.3]as the average Cohen’s Kappa coefficient, obtained after repeated
K-fold cross-validation. The highest Cohen’s Kappa coefficient (0.707) was reached when
27 features were retained in the model. The recursive feature elimination procedure did
not allow for the specification of the hyperparameters and therefore the Random forest
was built with the default values, namely 500 decision trees (ntree), and the square root
of the total number of features included in the model (mtry). Consequently, mtry was set
to five. Based on Figure [4.2] there is little difference in the model’s performance between
this hyperparameter set (0.685) and the optimal set obtained after the grid search (0.699),
hence the model with the default hyperparameters, instead of the optimal combination, is
not likely to have a major influence on the final classification results.
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Figure 4.3: Number of features in the Random Forest model retained after recursive feature
elimination, with the associated model’s performance, measured as the average Cohen’s
Kappa coefficient, obtained after repeated K-fold cross-validation. The bold dot represents
the number of features with the highest performance.

After feature selection, the model was applied to an independent test set for assessment
of the classification accuracy. As a result, the confusion matrix in Table [4.5 was obtained as
well as the overall accuracy (0.837) with its 95 % confidence interval (Cl) (0.752, 0.902),
and the Cohen’s Kappa coefficient (0.672). Based on the confusion matrix, the producer’s
and user’s accuracy of both classes were calculated (Table [4.5). The CTC class reached a
producer’s accuracy of 81.0 %, whereas the NTC class reached an accuracy of 87.0 %. This
means that NTC class objects of the independent test set were more correctly classified
than CTC class objects. The CTC class obtained a higher user’s accuracy (0.887) which
indicates that 88.7 % of the objects classified as CTC actually represent the CTC class
on the ground. This value is lower for the NTC class (0.784), so the classification of CTC
objects is more reliable. All things considered, the overall accuracy as well as the Cohen’s
Kappa coefficient scored relatively high. According to [McHugh| (2012), the Cohen’s Kappa
coefficient represents a moderate agreement, and it is likely that 35.0 % to 63.0 % of the
data are reliable. As a result, it may be possible to relatively accurately differentiate Melia
volkensii, included in the CTC mask, from its surroundings.
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Table 4.5: Confusion matrix of the CTC/NTC Random Forest classification after feature se-
lection, with calculation of the producer’s and user’s accuracy.

Reference data
CTC NTC Total

Classification data

CTC 47 6 53
NTC 11 40 51
Total 58 46

Producer’s accuracy 0.810 0.870
User’s accuracy 0.887 0.784

A few remarks on the CTC mask can be made. Most of the misclassifications were related
to trees with smaller crowns. Firstly, some trees were missed during the rule-based clas-
sification and therefore withheld from the classification with Random Forest. These errors
were not included in the accuracy assessment of the CTC mask, so it is likely that an over-
estimation of the correctly classified CTC objects occur. According to |Cho et al.| (2012),
trees with small crowns have a lower ratio "pure" inner crown versus "mixed" outer crown
pixels, making their detection more difficult unless spectrally very distinct. Therefore, they
have suggested that classification should only consider trees greater than or equal to three
times the pixel size of the image to mitigate the effects associated with false pixels in the
border of a tree crown and background effects in general (Cho et al., [2012). For this study
this would mean that only trees with a crown area greater than 2.25 m?2 should be con-
sidered. Secondly, some smaller trees, still included in the CTC mask after the rule-based
classification, were part of mixed objects with bare soil. When these objects corresponded
to ground truth data, biases in the reference data set were induced, often leading to mis-
classifications. This might also be partly anticipated by removing trees with a crown area
smaller than 2.25 m2. Alternatively, the availability of height information is likely to pre-
vent most of these misclassifications by providing thresholds to separate NTC from CTC
class objects. It is expected that this may critically increase the accuracy of the CTC mask
and thus have a positive influence on the final classification results. The ground truth data
was inspected to relate the described errors to the observations. However, it was found
that sometimes trees with large crowns were measured while they were not detectable on
the satellite imagery, conversely, some larger trees on the satellite imagery were identified
as trees with small crown areas during the field inventory. It has to be noted that there was
a relatively long period between image acquisition and the start and end of the field inven-
tory, namely approximately four to eight months, so some changes might have happened.
The imagery was acquired in the transition period between the long rainy season and the
long dry season, while data collection started at the beginning of the short rainy season
and the last trees were measured around the end of the second dry season (Section [3.1).
During this period, trees may have grown extensively since Melia volkensii is a fast growing
species. Additionally, some trees may have died or chopped down, followed by replanting
or resprouting, hence resulting in smaller tree crowns on the satellite imagery. The differ-
ences between the ground truth data and the satellite imagery may also be due to some
errors made during the field inventory. This made it almost impossible to determine which
variables (Section were responsible for the detection of individual trees.

47



Table gives an overview of the descriptive statistics of the Melia volkensii trees that
were not detected by the CTC mask.

Table 4.6: Descriptive statistics of Melia volkensii trees that were not included in the candi-
date tree crown mask. The trees are divided in classes of 5 cm diameter at breast height
(DBH) (cm). For each class, the average crown diameter (cm), height (m), age (year), and
vitality (1 to 5) are calculated. Additionally, the number of trees (%) in each class is repre-
sented.

DBH (cm) Crown Height (m) Tree age Tree Number of

diameter (cm) (year) vitality trees (%)
0.0-5.0 151.26 3.15 2.80 1.72 19.08
5.0-10.0 307.22 4.91 3.49 1.47 44.08
10.0 - 15.0 448.02 6.60 3.62 1.31 27.63
15.0 - 20.0 571.75 9.20 4.50 1.40 6.58
20.0 - 25.0 806.25 9.70 NA 1.75 2.63
25.0 - 30.0 NA NA NA NA 0.00

For determining which features were responsible for the distinction between the CTC and
NTC class, the selected features were ranked in descending order based on the Mean De-
crease Gini index (Figure [4.4). The top 10 highest-ranked features mostly consisted of
spectral features, including mean band values of R, G, and B, brightness, the standard de-
viation of NIR and R, and band ratios such as the enhanced vegetation index (EVI), the
ratio vegetation index (RVI), and the NDVI. Additionally, one object shape feature, namely
length, was included in the top 10. The other 17 features included mostly textural fea-
tures (11), five additional spectral features, and one shape feature. For visualisation of the
separability between CTC and NTC class objects, density functions of the classified objects
were plotted for the 20 highest-ranked features (Figure and Figure [4.6). Lower-ranked
features showed an increasingly overlap, and thus similarity between both classes. These
features may even not be able to separate CTC class objects from NTC class objects. De-
spite these findings, these features were still selected by the recursive feature elimination
procedure. When uninformative features correlate with the highest-ranked features, they
will also be retained by the selection procedure. This indicates the sensitivity of recursive
feature elimination in finding important features and eliminating less relevant features. A
preliminary elimination of features with low correlations to the desired classes, might in-
crease classification accuracies (Bulut} 2021)).
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4. Results and discussion
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Figure 4.4: Ranking of the selected features in descending order based on the Mean De-
crease Gini index after running the CTC/NTC Random Forest classification. Abbreviations of

the features are explained in Section [3.3.2]
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4.3 Differentiation of Melia volkensii

The CTC mask, obtained after the CTC/NTC Random Forest classification, was further clas-
sified into Melia volkensii and other tree species. The optimal hyperparameter set was also
determined with a grid search for all three sets of features. The optimal combinations were
selected and stored in Table with the associated model’s performance. The feature
set with only spectral features reached the highest performance with an average Cohen’s
Kappa coefficient of 0.392, obtained after repeated K-fold cross-validation, but the OOB er-
ror (23.90 %) of this feature set did not reach the lowest value. Nonetheless, the spectral
feature set was selected for further analysis as the Cohen’s Kappa coefficient is a more
qualitative measure of the model’s performance. All combinations of hyperparameters and
their associated average Cohen’s Kappa coefficient were stored in Figure[4.7]

Table 4.7: Optimal combination of hyperparameters (i.e. the number of input features at
each node (mtry) and the number of decision trees (ntree)) and the model’s performance,
measured as the average Cohen’s Kappa coefficient as well as the out-of-bag (OOB) error
(%), obtained after repeated K-fold cross-validation. These values resulted from a grid
search of the differentiation of Melia volkensii with Random Forest for all three feature sets
(i.e. (1) spectral features only, (2) a combination of spectral and textural features, and (3)
a combination of spectral, textural, and shape features)

Feature set ntree mtry Cohen’s Kappa OOB error (%)
Spectral 100 10 0.392 23.90
Spectral + texture 500 15 0.378 22.93
Spectral + texture + shape 25 12 0.369 23.17
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4. Results and discussion
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Figure 4.7: All combinations of hyperparameters (i.e. i.e. the number of input features at
each node (mtry) (dots) and the number of decision trees (ntree) (lines)) with their associ-
ated model’s performance, measured as the average Cohen’s Kappa coefficient, obtained
after repeated K-fold cross-validation. These values resulted from a grid search of the dif-
ferentiation of Melia volkensii with Random Forest performed with the spectral feature set.

Recursive feature elimination was performed on the spectral feature set. For each elimina-
tion of a feature, the model’s performance was stored in Figure [4.8]as the average Cohen’s
Kappa coefficient, obtained after repeated K-fold cross-validation. The highest Cohen’s
Kappa coefficient (0.351) was reached when nine features were included in the model.
The Random Forest was built with the default parameters of three input features at each
node (mtry) and 500 decision trees (ntree). Based on Figure there is little difference
in the model’s performance between this hyperparameter set and the optimal set, so it is
expected that this would not have a major influence on the final classification results.
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age Cohen’s Kappa coefficient, obtained after repeated K-fold cross-validation. The bold dot
represents the number of features with the highest performance.

The model with the selected features was applied to an independent test set for assessment
of the classification accuracy. As a result, the confusion matrix in Table [4.8|was obtained, as
well as the overall accuracy (0.665) with its 95 % CI (0.589, 0.735) and the Cohen’s Kappa
coefficient (0.118). Based on the confusion matrix, the producer’s and user’s accuracy were
calculated and stored in Table[4.8] Most of the other tree species (i.e. other) test set objects
were assigned to the Melia volkensii (i.e. mukau) class, namely 32 out of 47. This resulted
in both a low producer’s (0.319) and user’s accuracy (0.366) for the other tree species class,
meaning that the classification cannot be considered as reliable. Melia volkensii obtained a
higher producer’s (0.794) and user’s accuracy (0.758). These differences in accuracy might
be due to among other things, an imbalance in the number of test objects between both
classes, 126 for Melia volkensii compared to 47 for the other tree species class. Overall, the
Cohen’s Kappa coefficient scored very low and corresponded to no agreement according to
McHugh| (2012). Data collected under conditions of such disagreement are not meaningful,
and are more like random data (McHugh| 2012). Consequently, the obtained model has
a very low predictive power and is not suitable for application without some major adjust-
ments (Chapter[5). Maps resulting from the classification are included in Appendix[C
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4. Results and discussion

Table 4.8: Confusion matrix of the Random Forest classification for differentiating Melia
volkensii (mukau) from other tree species (other) after feature selection, with calculation of
the producer’s and user’s accuracy.

Reference data
Mukau Other Total

Classification data

Mukau 100 32 132
Other 26 15 41
Total 126 47

Producer’s accuracy 0.794 0.319
User’s accuracy 0.758 0.366

When comparing this study with literature, rather low classification results were achieved.
For example, [Pu et al.| (2018) has performed a similar study for classifying urban tree
species in the City of Tampa, Florida. They have reached Cohen’s Kappa coefficients ranging
from 0.334 to 0.514, corresponding to a minimal to weak agreement (McHugh| [2012)). Their
findings have reached a higher classification accuracy, but are not satisfactory either, so
little confidence in the study results should be placed (McHugh| 2012). The main difference
with this study is that they have used light normalisation to mitigate the disadvantages of
shade for classification, thereby preserving the shape of the crown. |Wang et al.|(2018) have
tried to classify artificial mangrove tree species, and reached Cohen’s Kappa values up to
0.747, corresponding to a moderate agreement (McHugh|, [2012). In contrast to this study,
they have not performed the classification on the individual tree crown level, but they have
rather conducted a land cover classification. The presence of monocultures in their study
area is also beneficial for the delineation of the regions to be classified. Nonetheless, com-
parison between studies is not straightforward and several factors need to be considered,
including the total number of classified tree species, classification algorithm, reference data
characteristics and the method used for accuracy assessment (Karlson et al.,|2016). In gen-
eral, the highest accuracies have been achieved when only a small number of tree species
have been analysed and/or when additional input data (e.g. height information) have been
used (Immitzer et al., [2012)).

The selected features were ranked in descending order based on the Mean Decrease Gini
index (Figure [4.9). Furthermore, density functions of the training data for the selected fea-
tures were plotted to visualise why Melia volkensii is not distinguishable from other tree
species using these features (Figure [4.10). Based on the graphs, it can be visually de-
termined that both classes show significant overlap for all features, therefore they were
difficult to separate. The limited reference data set may be one of the possible causes of
the poor classification results. The data was split into training and test data, as a result
of which some information comprised within the data may be missed during the training
stage, leading to the low predictive power of the model. Furthermore, there was no ground
truth data available regarding the class representing other tree species. By manually se-
lecting the reference data, there existed a significant possibility that some Melia volkensii
trees were included in the other tree species class leading to erroneous reference sam-
ples. According to Immitzer et al.[|(2012), a large sample size per class may have a positive
influence on the classification results.
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5. RECOMMENDATIONS

The classification of the candidate tree crown (CTC) mask in Melia volkensii and other tree
species reached a very low accuracy (Cohen’s Kappa coefficient of 0.118), wherefore little
confidence in the results should be placed (McHugh, 2012)). In this chapter, some rec-
ommendations based on literature will be made, that might enhance the accuracy of the
tree species classification. Most of these recommendations are related to data collection,
especially image acquisition.

5.1 Sensor

According to |Cho et al.| (2012), there is strong evidence that narrow wavelength bands
are necessary to resolve the subtle spectral differences between canopies and crowns of
different tree species in a landscape. These spectral signatures are linked to leaf and
canopy biochemical and biophysical properties, including photosynthetic pigments, foliar
nutrients, leaf morphology, canopy structure, and tree size compared to neighbouring trees
(Cho et al., 2012} |Fassnacht et al.,2016;|[Madonsela et al.,[2017)). However, these properties
vary not only with species, but also with vertical leaf area density, leaf age, and health
status. Furthermore, additional influences on the amount of reflected radiation are caused
by background signals related to, for instance, bare soil or neighbouring trees (Fassnacht
et al.,2016). In other words, the spectral reflectance of one species compared with another
will never be identical, nor will the spectral reflectance of trees of the same species be
exactly equal (Lillesand et al.| 2015). The main drivers of discriminating tree species in the
visible (VIS) - shortwave infrared (SWIR) region are related to differences in plant chemical
and physical properties between species, causing different levels of reflectance (amplitude)
(Fassnacht et al.[,|2016). Especially the yellow (Y) and/or red edge (RE) band are sensitive to
subtle differences in carotenoid and chlorophyll pigments amongst species, and therefore
are useful for enhancing tree species classification (Madonsela et al., |2017).

The latest generation of very high resolution (VHR) satellite systems designed with strate-
gically located and relatively narrow wavelength bands in the absorption features of plant
biochemicals and biophysicals offer promising solutions for widespread remote sensing of
plant species (Cho et al., 2012} [Karlson et al., |2016). In 2009, the VHR satellite WorldView-2
was launched by DigitalGlobe with four additional spectral bands (i.e. coastal blue (CB), Y,
RE, and near infrared 2 (NIR2)) on top of the four standard bands (i.e. blue (B), green (G),
red (R), and near infrared 1 (NIR1)). According to the data provider, the four new bands
are all related to vegetation properties which enables successful tree species classification
in various ecosystems, particularly when tree species show substantial spectral overlap,
or when a larger number of species has to be separated. However, the added value of
these bands seems to be species-dependent and play a minor role when a small number
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of species has to be classified (Immitzer et al., 2012} Karlson et al., 2016). Considering
the high costs related to the four additional bands, the user needs to evaluate if the new
bands are beneficial in relation to these extra costs (Immitzer et al., 2012). Compared
to WorldView-2, WorldView-3 provides both a higher spatial as well as spectral resolution.
WorldView-3 includes eight additional SWIR bands, which makes it the only VHR satellite
with SWIR sensing capabilities. These SWIR wavelength bands have previously shown to
be useful for tree species classification. Therefore, WorldView-3 may thus enable even
higher classification accuracies (Karlson et al., 2016} [Ferreira et al., |2019). Because of
the low classification accuracy in this study, it might be worth trying to differentiate Melia
volkensii based on WorldView-2 or -3 satellite imagery instead of Pléiades imagery, despite
the higher costs. It is expected that the additional spectral bands will critically improve
the classification accuracy of the last step implemented in the methodology used in this
study (Section [4.3). Alternatively, if there are budget constraints, using the free-of-charge
Sentinel-2 data might be a viable solution as the increased spectral resolution (i.e. 13 spec-
tral bands) compensates for the lack of spatial resolution (10, 20 or 60 m depending on
the wavelength band) (Ng et al., 2017), however, differentiation of Melia volkensii at the
individual tree crown level will no longer be possible. INg et al.| (2017) has established that
the higher spectral resolution has a positive influence on classification accuracies, partly
compensating the pixel size effects, and so contributes to improved detection and differ-
entiation of vegetation. These accuracies can even be further improved by using temporal
information available at five-day intervals (Ng et al., [2017).

5.2 Acquisition date

As discussed in Section the time of image acquisition should be aligned with the
phenological cycle of the species to be classified, in particular with periods in which target
species show peculiar characteristics (e.g. flowers or senescent leaves). This may poten-
tially favour the differentiation between the species of interest as changes in phenology
occur at different rates amongst species (Madonsela et al., 2017} |Ferreira et al., 2019).
Melia volkensii is a fast-growing, deciduous tree species native in Kenya. It sheds its leaves
twice a year during the dry seasons. Almost all leaves are shed during the long dry season.
As a result, this period is characterised by high leaf fall and low leaf cover. Towards the
end of the dry season, trees start flushing new leaves before the onset of the ensuing short
rainy season. After flushing, leaf fall ceases for short periods, but thereafter it increases
sharply during the later stages of the rainy season (Broadhead et al.|, 2003). Flowers and
fruits are also produced twice a year, with fruits becoming ripe at the end of the dry season
as the new leaves emerge. Stages of fruit development lack a seasonal pattern as a result
of which it is not uncommon that trees at the same site flower or fruit at different times of
the year (Orwa et al., |2009).

The optimal season to acquire imagery with the purpose of differentiating Melia volkensii is
likely to occur in the transition period between dry and wet seasons, including May, October,
December, and March (Section [3.1), because trees start to show specific characteristics
during these periods by shedding or flushing their leaves. The early dry seasons (May-
June and December-January) might be the best choice as spectral differences between tree
species are likely to be higher than in the wet season. Besides, frequent cloud cover might
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5. Recommendations

hinder image acquisition during the wet season (Karlson et al.,|2016)). For determining the
optimal acquisition date, the phenological cycle of other tree species occurring in the area
of interest should be examined, so an ideal period can be selected when the differences
between the species are maximised. Furthermore, the possibility of background effects
should be considered when selecting the optimal time of image acquisition. Background
reflectance, originating from crops, or the underlying grass layer, might induce spectral
confusion between trees, especially when trees are undergoing senescence accompanied
by leaf shedding (Cho et al.,|2012). Therefore, higher classification accuracies are expected
when the image is acquired after crop harvesting or grass mowing. Nevertheless, there
would always be some disadvantages and advantages when using data acquired during
any particular season, for example, there could be less within-species variability in the
spectral data at peak productivity, but the variability between species may also be limited
during this period (Cho et al., [2012). Multi-seasonal imagery, acquired in two distinctive
periods, namely one during green-up and one during senescence (Fassnacht et al.| [2016),
may also be beneficial for tree species classification. Considering the higher costs, it is
important to evaluate if the use of multiple acquisitions would contribute to a significant
increase in classification accuracy.

5.3 Field inventory

The location of individual trees was the most important variable used in this study (Section
[3.2.2), hence, it greatly influenced the classification results. Unfortunately, the handheld
global positioning system (GPS) used (i.e. Garmin 60 scx) reached an accuracy of only 3
m, consequently, a relatively high deviation compared to the true location of these trees
was induced. As a result, questionable reference objects were obtained in some cases, for
example, bare soil objects or other tree species were assigned to the Melia volkensii class,
and vice versa, resulting in erroneous reference samples. Therefore, every reference sam-
ple in the farms was manually checked, and relocated if necessary to reduce these errors as
much as possible, however, this was a very time-consuming process and may not have mit-
igated all errors or even induced new ones. The use of GPS devices with higher accuracy is
probably the most important prerequisite to obtain reliable classification results, even if the
classification is based on the best performing sensor, or the image is acquired in the most
optimal season. It is expected that the African satellite augmentation system (ASAS) will be
operational in Kenya between 2024 and 2030 (Durban University of Technology, |2015). This
network is developed to augment the GPS, with the goal of improving accuracy, integrity,
and availability (National Coordination Office for Space-Based Positioning, Navigation, and
Timing|, 2022)). In the future, using GPS devices compatible with this system is expected
to critically improve the positioning of individual trees during the field inventory. Alterna-
tively, light detection and ranging (LiDAR) data can be employed to measure the location
of individual trees with sub-metre accuracy (Holmgren et al., |2008)).

Next to optimising the positioning accuracy of individual trees, some smaller actions can
be taken to improve the ground truth data set. Collecting data of more trees to obtain a
larger sample size per class is expected to positively affect the final classification (Immitzer
et al., |2012), especially data concerning the other tree species class will have a great
influence. Furthermore, aligning the field inventory with the time of image acquisition would
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be beneficial because changes might happen when there is an extended period between
both data collections. When both data sets are collected in approximately the same period,
trees are more likely to appear in similar conditions in both data sets and it is less likely
that either of them would miss trees that were, for instance, chopped down or replanted.

5.4 Height information

The availability of structural information, especially tree height, may also improve the clas-
sification results. In this study, trees were separated from understory vegetation by per-
forming edge extraction Lee Sigma filtering, which resulted in the Roughness band (Section
[3.3.1). This was a viable solution in absence of height information but there were still
non-tree crown (NTC) objects included in the CTC mask after the rule-based classification
(Section[4.2.1), so the CTC class was further separated into CTC and NTC class objects with
Random Forest (Section before differentiating Melia volkensii. The Random Forest
classification reached a moderate agreement according to McHugh| (2012). This indicates
that the tree species of interest may partly possess similar properties to the underlying
grass layer (Kato et al., [2009). According to |[Kato et al.| (2009), structural variables may
help to reduce this spectral confusion. The availability of a tree height mask would facili-
tate the extraction of spectral information regarding the CTC class (Cho et al., |[2012), which
proved to be challenging task with several sub-steps in this study (Section[4.2)). By provid-
ing height information, most of these sub-steps could be omitted, thereby reducing a large
amount of expert knowledge used during these steps.

Tree height is generally obtained from auxiliary three-dimensional (3D) information, for ex-
ample, from canopy height models (CHM) (Kato et al., 2009; Immitzer et al., 2012). Such
data sets can be derived from LiDAR data but these are commonly expensive to acquire,
especially in Africa. A potential alternative is 3D data derived from the VHR satellite itself,
providing that the area of interest is covered spectroscopically (Immitzer et al., 2012; Karl-
son et al. 2016, Piermattei et al.l 2019). The long acquisition times of airborne remote
sensing present a major challenge to its use in monitoring afforestation at the landscape
scale. Full coverage of extended areas cannot be achieved in a single airborne inventory,
and logistic challenges are associated with multi-phase inventories. In comparison, VHR
stereo satellite imagery, which can now acquire images with sub-metre spatial resolution,
has the benefit of wider area coverage and spatially/temporally more homogeneous image
content with short repetition intervals. This makes VHR stereo satellite imagery a valuable
solution for monitoring afforestation at the national or sub-national level (Piermattei et al.,
2019). By combining the resulting digital surface model (DSM) with a pre-existing digital
terrain model (DTM), CHMs can be obtained. For example, Piermattei et al.| (2019) has used
Pléiades satellite imagery, acquired in the stereo and tri-stereo mode, in combination with
two DTMs that were generated earlier. They have established that the accuracy obtained
with Pléiades stereo images are comparable to aerial image matching when the forest com-
position guarantees a certain amount of foliage, and shadows cast by trees or the terrain
are minimal. Therefore, it may be worth investing in a DTM of the areas of interest so the
afforestation can be monitored on a more frequent basis by only investing in VHR stereo
satellite imagery. Three-dimensional information can also be used for accurate delineation
of individual tree crowns (Karlson et al., |2016).
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6. CONCLUSION

In this study, a methodology was proposed to differentiate Melia volkensii from its surround-
ing and other tree species at the individual tree crown level in an agroforestry layout. The
methodology consisted of several sub-steps, with two major parts. The first part focused on
separating the candidate tree crown (CTC) class, which included Melia volkensii, from the
non-tree crown (NTC) class (i.e. the surroundings). The delineation of individual tree crowns
played a major role in the possibility to differentiate Melia volkensii at the tree crown level.
A more automated procedure for tree crown delineation will be essential for large-scale ap-
plication of the proposed methodology. Due to background effects of crops, grasses, and
bare soil, or the similarity between overlapping crowns, not every CTC object was delin-
eated at the individual tree crown level. Therefore, crown clusters were also included in the
procedure. The Random Forest classification reached an accuracy with moderate agree-
ment, so the differentiation of Melia volkensii from its surroundings was relatively reliable,
however, an overestimation of the accuracy was probably made due to the omission of trees
during the rule-based classification. The availability of height information, LiDAR-derived
or stereo-image based, can improve the classification results by enabling more accurate
tree crown delineation and providing height thresholds to accurately separate CTC class
objects from NTC class objects. During the second step, the obtained CTC mask was fur-
ther differentiated into Melia volkensii and other tree species. The classification reached
low accuracies as a result of which the model is not suitable for application without major
adjustments. Due to the unsatisfactory classification results, no statements can be made
about which combination of features enabled the differentiation of Melia volkensii. The
use of very high resolution (VHR) satellites with narrow wavelength bands located in the
absorption spectrum of plant biochemicals and biophysicals, and the availability of ground
truth data regarding the other tree species class are likely to increase the accuracy of the
classification. Additionally, some smaller adjustments such as acquiring the image in the
most optimal season, or the use of multi-seasonal imagery may also positively influence
the classification accuracy.

The proposed methodology was automated as much as possible to make it applicable to
other areas where BGF might be interested in. However, some sub-steps (e.g. extracting
ridges) of the first part will be hard to reproduce, mostly because they involve a certain
amount of expert knowledge. These shortcomings are likely to be solved when there is
height information available for the delineation and extraction of candidate tree crowns.
The most important adjustment for both improving the classification accuracy as well as
for automation of the methodology, is probably increasing the positioning accuracy of GPS
devices used to locate the individual trees. In future research, extra attention should be
paid to this during the field inventory.
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APPENDIX A
LOCALISATION OF THE

COLLECTED DATA

Table A.1: Coordinates (CRS WGS 84 / UTM zone 37S) of the grid cells (No.) collected during
the field inventory.

No. East (UTM) South (UTM) No. East (UTM) South (UTM)
1 378648.255 9925151.187 23 379315.064 9924069.307
2 379216.417 9925145.643 23 379402.699 9924079.318
3 379353.029 9925153.344 24 378780.631 9923663.785
4 378832.919 9924920.164 24 378808.354 9923739.868
4 378703.547 9925004.565 25 378982.699 9923712.607
5 379034.833 9924932.024 25 379224.965 9923860.000
5 379115.537 9924931.099 26 379320.455 9923706.447
6 379408.320 9924933.410 26 379470.466 9923782.838
6 379607.000 9925038.448 27 378861.797 9923560.440
7 379745.922 9924933.102 28 379192.468 9923520.550
8 378439.256 9924812.354 28 379011.038 9923494.060
10 379097.518 9924818.514 29 379512.512 9923444.775
10 378929.641 9924767.843 29 379313.986 9923498.834
11 379619.860 9924678.745 30 378545.065 9923266.117
11 379312.600 9924677.821 31 378925.868 9923148.835
12 379825.394 9924693.685 31 379278.409 9923332.498
13 378832.765 9924508.173 32 379429.883 9923188.031
13 378690.609 9924478.757 34 378795.340 9922944.302
14 379133.095 9924439.175 35 379009.883 9923043.180
14 379047.771 9924513.410 36 379631.489 9923008.604
15 379492.952 9924524.422 36 379580.818 9923005.369
15 379491.874 9924596.963 37 378339.685 9922728.912
16 379740.223 9924596.501 38 378576.484 9922785.281
17 378879.278 9924186.590 38 378531.203 9922809.154
18 379248.992 9924251.661 39 378924.712 9922713.356
18 379039.300 9924147.932 40 379453.293 9922811.233
19 379329.080 9924293.861 41 378476.759 9922418.879
19 379405.009 9924236.722 42 378728.189 9922552.256
20 379725.823 9924356.776 45 378438.640 9922260.012
21 378882.897 9923940.242 46 378568.013 9922269.253
22 379004.877 9924051.287 46 378600.125 9922196.250
22 379097.287 9924064.532 49 378596.737 9922076.272
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Table A.2: Coordinates (CRS WGS 84 / UTM zone 37S) of the farms collected during the field
inventory, with indication of the village where the farms are situated and the name of the
farmer.

No. East (UTM) South (UTM) Village Name of farmer

1 381295.869 9925051.410 Katithini Stephene Mulwa Mukiti

2 381118.480 9924378.304 Katithini Peter Muimi Muthui

3 381653.000 9923907.733 Katithini Peter Mutua Gitune

4 384629.458 9922789.833 Mwangu Muteti Muthui

5 386408.941 9921059.196 Maskanioni Bonface Mutua Musyoka

6 386404.878 9919557.809 Masukanioni Peter Munyoki Muthui

7 386873.694 9920308.766 Maskanioni Peter Kimanzi Makau

8 388171.355 9921223.529 Maskanioni Peter mwendwa Francis mutemi
9 386361.811 9920473.338 Maskanioni Samuel musili munyoki

10 390655.912 9924837.998  Koriro Benson Kimanzi Mwendwa
11 388753.026 9925307.343 Kalatine Mboli Ngukuni

12 388313.971 9925142.750 Kalatine Martha Mwendwa

13 384217.805 9926323.223 Tondora Kilonzi Kimwele Ndatya
14  383473.495 9927602.109 Tondora Muthakye Muteti

15 382890.209 9926853.099 Katithini Peter Mutinda Muthengi
16 381305.399 9925882.234 Katithini Muthui Masyuko

17 381754.064 9924579.663 Katithini Mutuku Kitune
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APPENDIX B

DESCRIPTIVE STATISTICS

Table B.1: Descriptive statistics of neem (Azadirachta indica), acacia (Acacia sp.), and
baobab (Adansonia sp.) in the plantation. The trees are divided in classes of 5 cm diameter
at breast height (DBH) (cm), except for baobab as there were only three trees measured
of this species. For each class, the average crown diameter (cm), height (m), age (year),
and vitality (1 to 5) are calculated. Additionally, the number of trees (%) in each class is

represented.
DBH (cm) Crown Height (m) Tree age Tree Number of
diameter (cm) (year) vitality trees (%)
Azadirachta indica
0.0-5.0 155.46 3.34 14.00 2.60 13.87
5.0-10.0 251.61 5.39 14.00 1.94 46.72
10.0 - 15.0 337.15 7.90 13.90 1.42 32.36
15.0 - 20.0 386.88 9.52 13.85 1.58 6.33
20.0 - 25.0 595.17 9.57 14.00 1.00 0.73
Acacia sp.
0.0-5.0 397.75 2.50 10.00 2.00 2.50
5.0-10.0 462.26 6.84 10.00 1.96 6.57
10.0 - 15.0 612.06 10.75 10.00 1.09 8.27
15.0-20.0 664.66 11.44 10.00 1.00 3.89
20.0- 25.0 776.50 9.60 10.00 1.00 0.24
Adansonia sp.
0.0-50.0 280.00 4.00 30.00 1.00 66.67
350.0 - 400.0 2377.50 21.30 600.00 1.00 33.33
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APPENDIX C
CLASSIFICATION MAPS

In this appendix, the classification maps of the 17 farms, where ground truth data was
collected, are shown. It has to be noted that the classification reached a very low accuracy
(Cohen’s Kappa coefficient of 0.118), so these maps are not representative for the actual
conditions on the ground, but are rather a visualisation of the classification results.
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Figure C.1: The classification result of the proposed method to differentiate Melia volkensii in farm 1 (Table |A.2).
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Figure C.3: The classification result of the proposed method to differentiate Melia volkensii in farm 3 (Table |A.2).
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Figure C.5: The classification result of the proposed method to differentiate Melia volkensii in farm 5 (Table E
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Figure C.7: The classification result of the proposed method to differentiate Melia volkensii in farm 7 (Table E

84



C. Classification maps

H 3lgel) 8 W.) Ul [ISUSXJOA eljajy 91eIjUIaIp 03 poylaw pasodoid ay3 Jo 3NSaJ uoiedyIsse|d ayy :8 ) a4nbiy4

mopeys [

sa12ads 9aJ1 JaYy10 H_
nsuayjon el [
paylisse)d

wiie4 _H_
puadal

85



Legend
H_ Farm

Classified

B Velia volkensii

[ | Other tree species
[ shadow

Figure C.9: The classification result of the proposed method to differentiate Melia volkensii in farm 9 (Table E
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Figure C.11: The classification result of the proposed method to differentiate Melia volkensii in farm 11 (Table E
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Figure C.13: The classification result of the proposed method to differentiate Melia volkensii in farm 13 (Table E
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Figure C.15: The classification result of the proposed method to differentiate Melia volkensii in farm 15 (Table E
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Figure C.17: The classification result of the proposed method to differentiate Melia volkensii in farm 17 (Table E
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